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ABSTRACT:  We propose an economic reformulation of contribution policy integrating:  (1) 

formalization of sustainability as the steady-state contribution rate, incorporating both the 

expected return on risky assets and a low-risk discount rate for liabilities; (2) derivation of 

contribution adjustment policies required for convergence toward the target funded ratio and 

contribution rate; and (3) a stylized optimization framework for simultaneous determination of 

the target portfolio return and funded ratio.  This analysis provides new theoretical insights into 

the basis for pre-funding vs. pay-as-you-go, resting on the convexity of the long-run risk-return 

relationship, and also potentially practical guidelines for contribution policy.  
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TOWARD AN ECONOMIC REFORMULATION OF PUBLIC PENSION FUNDING  

 

I. INTRODUCTION AND SUMMARY  

Most state and local employees are enrolled in final-average-salary defined benefit 

pension plans. These plans rely on taxpayer and member contributions and investment returns to 

pay for benefits. Under existing actuarial funding policy, the goal is to fully fund benefits over 

the course of workers’ careers. To achieve this goal, plans must make a host of predictions about 

the future to set adequate contribution rates. If reality falls short of their predictions, the 

government sponsor must make up the difference with additional contributions. Unfortunately, 

existing actuarial funding policy has resulted in contributions that have fallen short of the amount 

needed to cover promised benefit payments resulting in deteriorating funded ratios, steeply rising 

government contributions, and reduced benefits for new public workers. 

Given the scale of public pension promises, pension sustainability not only has big 

implications for millions of public workers’ retirement security but also for government budgets 

and future generations of workers and taxpayers. Yet, the concept of sustainability has not been 

clearly defined, nor has the related risk-return tradeoff been well integrated into funding policy. 

We contend that the current actuarial formulation is part of the problem, and has, as a result, 

arguably failed to deliver either sustainability or intergenerational equity. 

In this paper, we outline an economic reformulation of contribution policy that begins by: 

(i) conceptualizing sustainability as the steady-state contribution rate, conditional on the target 

funded ratio; followed by (ii) analysis of contribution adjustment policies required for 

convergence, in expected value; and concluding with (iii) a stylized optimization framework for 

simultaneous determination of the target portfolio return and funded ratio.  This analysis 
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provides new theoretical insights into the basis for pre-funding, and also potentially practical 

guidelines for contribution policy.  

Specifically, on the theoretical side, we find that the traditional basis for pre-funding vs. 

pay-as-you-go, which rests on the spread between the risk-free return and the growth rate of 

payroll, may be greatly augmented by the net benefit of the risk premium chosen by optimizing 

policymakers.  We show that the relative magnitude of these two bases for pre-funding depends 

on the policymakers’ tolerance for risk imposed on future generations and the convexity of the 

long-run risk-return relationship.  

Put differently, the actuarial basis for pre-funding rests on the difference between the 

pay-go rate and the normal cost rate, which, in turn, rests on the spread between the payroll 

growth and discount rate. If normal cost is properly discounted, at a low-risk rate, this spread is 

narrow.  However, if the cost of future risk is considered low, relative to the target return, the 

optimal risk-return play outweighs the true actuarial basis for pre-funding.   

On the practical side, our reformulation proposes: (i) replacing the actuarial funding 

target with a target for the true funded ratio, where liabilities are properly discounted and (ii) 

replacing actuarial contribution policies of normal cost plus amortization with a two-gap 

adjustment process.  That process adjusts contributions based on the gap with the steady-state 

contribution rate and the gap with the target funded ratio.  We show how the two adjustment 

parameters can be varied to manage the tradeoff between contribution risk and asset level risk.  

We also provide an illustrative example (CalSTRS) of how such a policy can be tailored, outside 

of steady state, to moving targets.  We believe the approach sketched out here promises both to 

provide a more sustainable basis for funding policy and deeper insights into the basis for pre-

funding in the first place. 
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II. THE PROBLEM WITH ACTUARIAL FUNDING POLICY AND OUR ALTERNATIVE 

At the heart of the issue with actuarial funding is a puzzle it seemingly cannot solve. It is 

generally agreed among economists that pension liabilities should be discounted at a low-risk 

rate corresponding to the guaranteed nature of the benefits promised, at least for reporting 

purposes. But it remains an open question how proper discounting of liabilities should inform 

funding policy. Actuarial funding policy sets contributions equal to the normal cost plus 

amortization of any pension debt. However, normal costs must logically be discounted by the 

same rate as liabilities since they are mathematically linked. Consistently discounting normal 

cost by the low-risk rate would dramatically raise contributions, compared to standard actuarial 

practice of discounting by the expected (or assumed) return on risky assets. Unless the pension 

plan decides to invest only in low-yield, risk-free assets – in which case contributions would 

indeed have to be dramatically elevated – there seems to be no way to fit the square peg of 

proper liability discounting into the round hole of actuarial funding policy.1 

The core problem is that actuarial funding formulas are deterministic2 and ill-suited to 

conveying the benefits and costs of investment in risky assets. This requires both the expected 

return and the risk-free return, as the risk premium is the spread between the two.  Our economic 

reformulation starts (in Section IV) with the steady-state analysis of the fundamental equations 

of motion for assets and liabilities, where liabilities are properly discounted at a low-risk rate 

while asset growth carries a risky expected return.  For any given target funded ratio, we derive a 

target contribution rate embedding the expected return on risky assets and the low-risk discount 

rate for liabilities.   

 
1 In principle, GASB now requires a blended discount rate, in the event of projected asset exhaustion, but the 

admissible projection methods provide so much latitude that a blended rate is almost never invoked. 
2 GASB requires some sensitivity analysis for liabilities, and a few plans do so for contribution rates too. 
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Specifically, the expected steady state contribution rate is a blend of the pay-go rate and 

the properly discounted normal cost rate, weighted by the target funded ratio, and partially 

defrayed by the risk premium between the expected return and the risk-free rate.  Among other 

insights, this relationship shows that the expected steady-state contribution rate can fall well 

below the true normal cost rate, due to the premium on risky investments.  Since the risk 

premium mirrors the cost of risk, this formulation helps encapsulate the tradeoff between the cost 

of risk and the benefit of lower expected contributions.   

We then formally derive (in Section V) a family of transition policies for convergence 

toward the expected steady state.  These policies adjust contributions based on the two gaps with 

the asset and contribution targets. We illustrate how the adjustment parameters of our proposed 

policy might be calibrated to manage the tradeoff between long-run contribution rate risk and the 

speed of adjustment toward the two targets.  Simulation of such a policy illustrates the rising risk 

over time and, importantly, shows the convexity of the long-run risk-return relationship. 

Finally (in Section VI), we embed our steady-state results in a stylized optimizing 

framework for the simultaneous determination of the target funded ratio and asset allocation, 

based on the tradeoff between risk and return.  Our optimizing conditions, together with our 

steady-state results, generate a new perspective on the basis for pre-funding.  Specifically, we 

find that convexity of the long-run risk-return relationship can lead policymakers to place far 

greater weight on the net benefits of risky investment (as they evaluate them) than on the narrow  

difference between the pay-go rate and the properly discounted normal cost rate.   

In sum, our analysis offers both a new understanding of the basis for pre-funding and 

suggests a possible reformulation of funding policy toward that end.  Such a policy replaces the 

standard actuarial formula of normal cost (wrongly discounted) plus an amortization rate, with, 
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instead, a more general steady-state contribution rate, plus two adjustment factors calibrated to 

manage the tradeoff between contribution rate risk and timely convergence. Our concluding 

section offers caveats and suggestions for future refinements. 

 

III. LITERATURE REVIEW:  WHERE DOES OUR PAPER FIT?   

We see three overlapping strands in the literature on optimal pension funding policy 

(asset accumulation and asset allocation): (1) corporate pensions; (2) public pensions aimed at 

full funding; and (3) public pensions where the steady-state funded ratio is an open question 

addressed by the models.  This paper falls in the latter category, but the broader context is useful. 

The seminal papers on corporate pension funding policy (Sharpe, 1976, Treynor, 1977) 

start from an irrelevance proposition.  Analogous to Modigliani-Miller, funding policy does not 

matter under frictionless, fully informed, unregulated complete markets.  Specifically, the size 

and risk of the pension fund can be thought of as creating a put option owned by the firm with a 

default-contingent claim against the employees.  If recognized by the employees (or their 

bargaining agent), any variation in the risk of default, reflected in the value of the put, would be 

offset by a wage differential compensating for the pension risk.  From that starting point, the 

literature draws out how funding policy does matter in the “real” world, based on carefully 

specified deviations from the ideal, starting with the introduction of ERISA and the implicit 

pricing – or mispricing – of pension insurance.3 

Public pension funding policy differs in key respects from that of corporate pensions.  

Default is generally not an option.  The objective function for policymakers is not shareholder 

value, but rather (ideally) the interests of present and future taxpayers.  But here, too, one finds 

 
3 See Love, Smith, and Wilcox, 2011, for a more recent treatment of the impact of regulation on optimal corporate 

pension risk. 

https://www.sciencedirect.com/science/article/abs/pii/0304405X76900027
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1977.tb03300.x
https://www.sciencedirect.com/science/article/pii/S0304405X11000493
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an irrelevance theorem if the Modigliani-Miller conditions hold, along with Ricardian 

equivalence regarding taxation, so interest focuses on departures from these conditions.  Thus, 

D’Arcy, et. al. (1999) examine the optimal funded ratio over time to minimize the cost of 

distortionary taxes in a multi-period deterministic model, based on the relationships among the 

initial funded ratio and the growth rates of pension benefits and the tax base.   

This line of thought also extends to the question of asset allocation.  While a traditional 

finance approach would match risk-free income streams to the stream of promised payments, 

modern asset liability management (ALM) theory notes that liabilities bear risk (e.g., due to 

wage fluctuations), which can be hedged to some extent by equity holdings.  Lucas and Zeldes 

(2009) examine the impact of distortionary taxes on the optimal equity holdings, chosen to 

smooth tax rates over time in a stochastic two-period model, due to the positive correlation 

between equity returns and liability growth.   

Pennacchi and Rastad (2011) consider the polar case where the portfolio can be chosen 

with stochastic properties that exactly offset those of liabilities. They make the strong argument 

that such complete “immunization” would maximize utility of a representative risk-averse 

taxpayer, given that taxpayers lack the information to achieve those ends through their own 

portfolio choices.  However, Pennacchi and Rastad (2011) also consider the agency problems 

that may lead to excessive risk when policymakers and fund managers maximize their own 

utility (which may downplay liability risk) instead of taxpapers’ utility (where liability risk 

ultimately affects the risk of future taxation). 

Conversely, factors against risky portfolios include a different agency problem, where 

upside outcomes may not fully benefit taxpayers but may instead lead to enhanced employee 

benefits.  Van Binsbergen and Brandt (2016) analyze the asset allocation problem through a 

https://doi.org/10.2307/253552
https://www.aeaweb.org/articles?id=10.1257/aer.99.2.527
https://www.aeaweb.org/articles?id=10.1257/aer.99.2.527
https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/abs/portfolio-allocation-for-public-pension-funds/2849D17EC73E44CF2CEF02F04FDE08AE
https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/abs/portfolio-allocation-for-public-pension-funds/2849D17EC73E44CF2CEF02F04FDE08AE
https://onlinelibrary.wiley.com/doi/10.1002/9781118709207.ch8
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dynamic programming model, where the objective function represents the preferences (including 

risk aversion) of an investment manager (arguably analogous to that of a public policymaker).  

Their goal is to examine the impact of financial reporting rules, pre-emptive constraints to 

control risk and ex-post penalty payments for underfunding.   

All of the public pension policy models above are tethered by the goal of full funding at 

some future date.4 However, there is another strand of work, based on overlapping generations 

(OLG) to perpetuity, that poses the question of whether liabilities should be fully funded, even in 

steady state.  This literature, of course, begins with Samuelson’s (1958) seminal analysis, where 

the optimality of pre-funding vs. pay-go turns on whether the rate of return exceeds the growth 

rate, a condition that is generally assumed to hold.  In addition, the traditional interpretation of 

intergenerational equity holds that each generation of taxpayers should pay for its own full cost 

of public services, including pre-funding benefits (Munnell, et. al., 2011).   

Further contributions in this third strand examine the pros and cons of pre-funding based 

on additional departures from the Ricardian and Modigliani-Miller conditions.  Bohn (2011), for 

example, constructs an OLG model featuring intermediation costs faced by individual borrowers 

that exceed those of public entities, so that it is efficient for public pension plans to take on debt 

on behalf of the taxpayers.  As a result, the optimal funding level is less than 100 percent and 

may well be zero (pay-go).  Conversely, various aspects of political economy (transparency, 

agency problems, distorted political time horizons) may argue for pre-funding, to one extent or 

another (Brown, Clark, and Rauh (2011, section 3).5    

More recently, Lenney, Lutz, and Sheiner (2019a; 2019b), Lenney, et. al. (2021) 

challenge the intergenerational equity case for pre-funding, observing that rising contributions to 

 
4 In the Pennacchi and Rastad (2011) model, taxpayers pay off any shortfall (or recoup any surplus) at time T. 
5 See also the related formal political economy analysis in Glaeser and Ponzetto (2014).  

https://www.journals.uchicago.edu/doi/epdf/10.1086/258100
https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/public-pension-funding-in-practice/2ADCB529A3BF19815958E97C6A777C8F
https://doi.org/10.1017/S1474747211000096
https://doi.org/10.1017/S1474747211000138
https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al.pdf
https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/abs/portfolio-allocation-for-public-pension-funds/2849D17EC73E44CF2CEF02F04FDE08AE
https://www.sciencedirect.com/science/article/abs/pii/S0047272714000541
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pay down pension debt have burdened current generations with the cost of benefits for prior 

generations, instead of spreading these costs over the indefinite future.  Their recommended 

funding policy is, instead, to simply maintain current pension debt ratios, a policy that effectively 

takes the properly discounted current funded ratio as given and sets the steady-state contribution 

rate based on that status quo.6  Under their preferred scenarios of modest expected returns, 

aggregate contribution rates would only need a moderate hike to stabilize debt ratios.    

Lucas (2021) and Rauh (2021), point out the difficulties that arise from using a risky rate 

of return in a deterministic model, even as liabilities are discounted at a risk-free rate.  As a 

result, Rauh (2021) argues the debt-stabilizing contribution rate may well rise much higher than 

Lenney, et. al. (2021) suggest.  He also points out that their paper assumes away the cost of 

insolvency in their stochastic simulations by unrealistically assuming plans can borrow through 

periods of negative assets.  As he points out, rating agencies factor in the risk of insolvency, and, 

hence, the risk that contributions would jump to the pay-go rate.  Lucas (2021) also places great 

emphasis on the risk of insolvency, arguing that the goal of (expected) debt-stabilization is a less 

suitable definition of sustainability than insolvency-minimization.   

Where does the present paper’s analysis fit in with these preceding literatures?  As stated 

above, this paper (building on Costrell, 2018a and Costrell and McGee, 2020), falls in the 

category of perpetually overlapping generations, where the steady-state funded ratio is an open 

question, unlike closed interval models necessarily culminating in full funding.  The big question 

we address, as summarized above, is how the target funding decision depends on the risk and 

return profile that policymakers choose in their asset allocation decision.  That said, some of the 

 
6 This is a special case of our model, as shown in Section IV below. 

https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al_Comments-GD.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al_Comments-GD.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al_Comments-GD.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al_Comments-GD.pdf
https://edre.uark.edu/_resources/pdf/coepjuly18.pdf
https://www.edworkingpapers.com/ai20-272
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specific features of our analysis have some surface similarities to other papers summarized 

above, so it may be helpful to spell out how they differ. 

In the first step of our analysis, we derive the steady-state contribution rate, contingent on 

the target funded ratio and asset allocation.  This goal of finding a constant contribution rate is 

similar to those papers that base their results on equalizing distortionary tax rates over time, en 

route to full funding.  Our rationale for analyzing steady states is based instead on the simple 

notion of sustainability.   

The second step of our analysis finds an adjustment process and parameters thereof for 

the contribution rate that leads to timely convergence.  This surprisingly non-trivial exercise – 

even in the deterministic case – has some surface similarity to the analysis of penalty payments 

for underfunding but is very different in context and motivation.  It is based on securing 

convergence rather than shaping incentives.   

The culminating step of our analysis introduces an optimization framework, similar to the 

literature cited above, but with a number of key differences in structure and purpose.  The 

purpose is to revisit the theoretical basis for pre-funding, with a focus on the net benefits from 

public risk-bearing, as evaluated by the policymakers.  Specifically, we posit a very simple 

objective function – a reduced form, so to speak – which may be thought of as capturing all the 

deviations from Ricardian equivalence and Modigliani-Miller conditions that are more carefully 

analyzed in the literature above.  From this simple setup and estimates of the convexity in the 

long-run risk-return relationship, we can compare the traditional basis for pre-funding with that 

derived from the perceived net benefit of risky investments, for any chosen target return.  

 

IV. STEADY STATE ANALYSIS 
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Sustainability – the idea of something being sustained – raises the question of what that 

something (or more than one something) is for pension policy.  It seems natural to identify the 

contribution rate as the key variable that one would want to stabilize and to do so at a level that 

would stave off risk of insolvency, rating agency downgrades for the taxing authority, crowd-out 

of other necessary public services, or some other form of fiscal distress. Judging by the fact that 

contribution rates have been generally rising since around 2000, it does not seem that current 

actuarial funding models have succeeded in securing this notion of sustainability.   

We propose a return to first principles by formally defining sustainability as a steady state 

in the contribution rate and funded ratio.  There are many such steady states, including the pay-

go rate, at zero funding, and, conversely, many degrees of pre-funding, with their corresponding 

contribution rates.  Thus, the nature of the steady state depends on the goals of the policy, as well 

as the plan parameters and assumptions, most notably the rate of return.   

Although the analysis of steady states oversimplifies actual systems – even in expected 

value – since the parameters themselves never settle into steady states, the approach offers 

insights akin to other simple economic models. Steady state analysis arguably lays out the 

characteristics of the system’s trajectory, even if it is aiming at a moving target, as will be 

illustrated below in Section V simulation of CalSTRS.  That said, as will be discussed in our 

Conclusion, further work, building on this baseline, would be useful to analyze more dramatic 

deviations from steady state, such as plans with rising dependency ratios or falling benefits, and 

correspondingly trending pay-go rates.  

In the next subsections, we lay out our steady-state analysis, derived from the 

fundamental laws of motion of a plan’s assets and liabilities, for a constant pay-go rate and 
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payroll growth rate, to examine how the contribution rate rests on the funding target and 

portfolio return. 

 

Steady State Condition for Contribution Rate and Asset Targets 

The proximate determinant of the steady state contribution rate is the asset target.  As we 

will show, the asset target determines that portion of benefits to be covered by investment 

income, leaving the rest for the steady state contribution rate.  Liabilities only enter the picture as 

a benchmark for the asset target, linked by the target funded ratio.  Thus, we consider the asset 

target first, generating insights of its own, and then bring in liabilities in the next subsection. 

There are two sources of pension funding and two uses: contributions and investment 

income go to cover the payment of benefits and the accumulation of assets.  Of these four flow 

variables, the stream of benefit payments is exogenous to our analysis (determined by the tiered 

benefit formulas and workforce assumptions), and investment income is governed by the 

sequentially determined stock of assets and the series of annual returns.  This leaves the series of 

contributions and that of asset accumulation as mechanically linked. That is, the funding policy is 

simultaneously a contribution policy and an asset accumulation policy. 

Formally, this relationship is captured in the fundamental asset growth equation: 

(1) At+1  = At(1+rt) + ctWt − cp
tWt , 

where At denotes assets at the beginning of period t, rt is the return in period t, Wt is payroll, 

while ct and cp
t are the contribution and benefit payment rates, respectively, as proportions of 

payroll (Table 1 lists notation).  Assets grow by investment earnings, plus contributions, net of 

benefit payments.  Equation (1) is simply an accounting identity.  To give it economic content, 

for sustainability analysis, we need to specify a funding policy to drive ct.  Given returns and 
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benefit payments, the contribution policy sets asset growth.  We will spell out our approach to 

the choice of contribution policy below, but even before delving into the specifics, equation (1) 

helps focus on the fundamental tradeoffs among these policies. 

 It will be useful to re-express equation (1) in terms of the ratio of assets to payroll, a ≡ 

(A/W).  Dividing through (1) by Wt, and denoting the growth rate of payroll by g, we have: 

(1′) at+1(1+gt) = at(1+rt) + ct − cp
t . 

The big picture here can be illuminated by examining the steady-state relationship between the 

contribution rate and assets.  In steady state, the growth rate of assets must equal that of payroll, 

so the asset ratio is constant, at+1 = at = a*.  Removing the time subscript for the steady-state 

values of the benefit payment rate cp, the rate of return r, and the payroll growth rate g, we have 

the relationship between the steady-state contribution rate and asset ratio: 

(1*) c* = cp
 − (r − g)a*. 

The interpretation is straightforward:  benefit payments are covered by a mix of contributions 

and investment income (net of growth), where the mix is determined by the funding policy.  

Under a policy of pay-go, where no assets are accumulated (a* = 0), the contribution rate must 

cover the benefits payment rate cp.  Under a policy of pre-funding, to one degree or another, the 

goal is to accumulate a certain asset level, a*, so the income from those assets (net of growth) 

can help fund benefits, ultimately reducing reliance on contributions.   

 One very modest test of sustainability is to consider whether current contribution rates 

are sufficient to sustain a steady state at current asset levels.  To be sure, that is not the goal of 

current policies, which are attempting to raise asset levels to amortize pension debt.  But if we 
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consider the minimal target of a* = a0, would the current contribution rate, c0, need to rise to 

sustain the asset level? Is c0 < c*(a0)?
7  Let us consider recent trends and magnitudes.   

Figure 1 depicts the aggregate values of ct and cp
t for FY01 – FY20, of the 119 state and 

91 local plans in the Public Plans Database (PPD), which account for 95 percent of state and 

local pension assets and members in the U.S.  The contribution rate, as a percent of payroll, has 

been steadily climbing since the turn of the century, from about 12 percent to 27 percent.8  

The benefit (or “pay-go”) rate has also trended up, from 20 percent to 38 percent, due in 

part to benefit increases enacted in the 1990s and early 2000s, but largely due to the aging 

workforce and falling number of actives per retiree.  However, it may now be leveling off.9    

It is important to note that throughout this period the benefit rate exceeds the contribution 

rate by a large margin, over 10 percentage points since 2010.  That is, the primary cash flow (i.e., 

excluding investment income) is negative. Thus, if assets were to be depleted, contributions 

would have to jump to cover benefits.  That is arguably the main cost of insolvency.10 

 Figure 2 depicts the asset ratio a ≡ (A/W) from the same dataset.  This has fluctuated with 

market returns, along with trends in benefit payments and contributions, but in recent years 

assets have hovered around a multiple of 5 times covered payroll. 

With these data for a0 and cp, along with typical plan assumptions of g = 3% and r = 7%, 

we calculate c*(a0) = cp
 − (r − g)a0  = 0.38 – (0.07 – 0.03) × 5 = 0.18.  This is less than the 

current contribution rate, c0 = 0.27.  Thus, taken at face value, this would suggest that, in the 

 
7 Equivalently, using (1*): is a0 < a*(c0)? If so, then a policy of holding contributions at the current rate of c0 would 

lead to a continual draw-down of assets, following the dynamic of (1′).  That is, the current contribution rate would 

lead to insolvency.  This is a special case of the convergence analysis discussed below.   
8 This includes employer and employee contributions.  The FY20 mix is 20 percent and 7 percent, respectively. 
9 Lenney, Lutz, and Sheiner (2019a; 2019b) project that the benefit rate will peak over the next decade and decline 

thereafter, as recent hires, in less generous tiers, enter retirement and beneficiaries of more generous tiers die off. 
10 It is important to distinguish between insolvency (i.e., reversion to pay-go) and default on benefits, which would 

violate taxpayer guarantees for a public plan, unlike private plans. 

https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
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aggregate, the current configuration is sustainable, and, indeed, that contribution rates could fall 

while still supporting current asset ratios.  Of course, this depends on a host of assumptions, not 

least of which are the assumed rate of return and growth rate – specifically, the spread between 

the two.  As long as (r – g) exceeds about 2 percent (e.g., r > 5 percent for g = 3 percent), the 

current overall contribution rate could sustain a0, under this simple analysis.   

This picture also generally holds for the individual plans in the PPD database.  Using 

each plan’s assumed return (the vast majority lie between 7.0 and 7.5 percent for FY20), we find 

that in 158 of the 188 plans for which c*(a0) can be calculated, the contribution rate c0 exceeds 

that value.11  This also holds for 69 of the 79 largest plans, with assets exceeding $10 billion.   

This result, however, is sensitive to the assumed return, or, more precisely, the assumed 

spread between r and g.  Reducing each plans’ assumed return to 5.0 percent (while holding g = 

3 percent) changes the picture.  Under this assumption, the contribution rate for most plans (107 

of the 188 plans, and 48 of the largest 79 plans) is too low to sustain the current asset ratio.  As 

this exercise illustrates, it is important to bear in mind that the steady states we examine are, at 

best, steady states in the expected value of contributions, with significant risk in actual outcomes. 

Indeed, looking back over the time series depicted, even though c0 has consistently 

exceeded c*(a0) under the assumed spread between r and g, the asset ratio has not risen. Despite 

ever-rising contribution rates, the attempt to raise the asset ratio has generally failed.  This not 

only indicates faulty assumptions; more fundamentally, it points to a failure of contribution 

policies to self-correct – a topic we return to below under the subject of convergence.  But first, 

we turn to the role of liabilities in setting asset targets.  

 

 
11 The assumed growth rate for payroll is only available in the PPD for 76 plans.  Of those, the vast majority lie 

between 2.75 and 3.5 percent, so we set the growth rate at 3.0 percent for the calculation of c*(a0) in all plans.   
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Steady State Condition for Liabilities 

We begin with the fundamental growth equation for liabilities: 

(2) Lt+1  = Lt(1+d) + cn
tWt − cp

tWt , 

where Lt denotes accrued liabilities at the beginning of period t, d is the discount rate, and cn
t is 

the normal cost rate, the rate at which new liabilities accrue, as a percent of payroll.  Liabilities 

grow by the interest on past liabilities, plus newly accrued liabilities, net of benefit payments that 

extinguish prior liabilities.  Equation (2) is analogous to the asset growth equation (1), but with 

some key differences:   

 First, the formulation in (2) allows for a distinction between the discount rate d and the 

assumed (or expected) rate of return on assets r.  Standard actuarial practice, of course, has 

traditionally discounted by r.  By contrast, finance economics has consistently made the case that 

guaranteed benefits should be discounted by interest rates of correspondingly low-risk bonds, at 

least for accounting purposes (Novy-Marx & Rauh, 2009, 2011; Brown & Wilcox, 2009; Biggs, 

2011).  If asset accumulation and projections thereof reflect actual and assumed returns on a 

higher-risk pension fund portfolio, this raises the question of how a dual rate system should play 

out in contribution policy.  In the previous subsection, focused on asset accumulation, the steady-

state contribution policy depended only on r and not on d.  We consider below how the 

consideration of liabilities, discounted at d < r, should factor into contribution policy. 

 The second difference between the liability growth equation (2) and the asset 

accumulation equation (1) is the role of cn
t, the normal cost rate, vs. ct,, the contribution rate.  The 

normal cost rate is independent of the contribution policy.  It is determined by the benefit 

formula, the cohort’s assumed separation probabilities over its members’ careers, and 

http://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.23.4.191
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2011.01664.x/abstract;jsessionid=174246A043E68FFACB0CEA4BCCFF9DB6.f01t04
http://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.99.2.538
https://www.aei.org/wp-content/uploads/2011/10/biggs-public%20budgeting%20and%20finance-options%20pricing%20paper.pdf
https://www.aei.org/wp-content/uploads/2011/10/biggs-public%20budgeting%20and%20finance-options%20pricing%20paper.pdf
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(importantly) the discount rate.12  This means equation (2) is logically prior to the asset 

accumulation and contribution equation (1).  In our model, equation (2) will feed into (1*) by 

tying the asset target, a*, to liabilities. 

 It will be useful to express (2) in the state variable λ ≡ L/W = liabilities/payroll, using the 

same steps as in the derivation of (1′):  

(2′) λt+1(1+gt) = λt(1+d) + cn
t − cp

t . 

If we take the benefit formula and demographic/worklife assumptions as exogenous, along with 

d and g, then so are cn and cp.  Thus, we can readily derive the steady-state liability ratio: 

(2*) λ* = (cp
 − cn)/(d − g). 

This expression has a simple interpretation.  First note that the present value of future payroll in 

steady state is Wt/(d – g), using the formula for a growing perpetuity.  The PV of future benefit 

payments and liability accruals (normal costs) are, respectively, fractions cp and cn of the PV of 

future payroll.  Thus, equation (2*)’s steady-state liability ratio, λ*, represents the difference 

between the PV of future benefit payments and normal costs, scaled to current payroll.13   

Figure 3 depicts the aggregate liability ratio, drawing again on the PPD, where the 

liabilities are reported based on each plan’s assumed return, r. That ratio (depicted by the red 

curve) has gradually risen from about 4.6 in FY01 to about 7.2 in FY20, a rise of 56 percent.  

Several factors have contributed to this trend, including reductions in the assumed return and a 

rise in the ratio of retireds to actives.14  

 
12 It also depends on the specific actuarial cost method for allocating liabilities between past and future accruals.  To 

fix ideas, we have in mind the standard entry age normal cost method. 
13 This follows from the basic identity that the PV of all future benefits equals the PV of benefits yet to be accrued 

(the PV of future normal costs) plus the PV of benefits previously accrued but not yet paid.  The latter term is the 

accrued liability, so it equals the difference between the PV of all future benefits and the PV of future normal costs.   
14 Benefit changes have also affected the trends, but in no simple fashion, as many plans raised benefits in the early 

2000’s and then cut them for new hires in the 2010’s.  Comparing the liability ratios with the calculated values of λ* 

for FY01, FY10, and FY20, we find these values match for FY01 (4.6 vs. 4.5), but for FY10 and FY20, the liability 
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Liabilities are much higher when discounted at a low-risk rate d, instead of r.  Estimates 

vary regarding the magnitude of the impact.  Here, we consider the liability estimates of the 

Federal Reserve Board of Governors, depicted by the black curve in Figure 3.15 Comparing these 

estimates with the reported values of the PPD suggest that properly discounted liabilities are 

about 60 percent higher.16  By this measure, the liability ratio has risen from about 7.3 in FY01 

to about 12.3 in FY20, a rise of 67 percent. 

Tying this together with the previous subsection, on asset accumulation, the actuarial goal 

of fully funding reported liabilities would raise the asset ratio from about 5 times payroll to 7.  

Although this goal has proven challenging, it still falls well short of matching true liabilities.   

The true funded ratio, upon accumulating assets of 7 times payroll, would be about 7/12, or 58 

percent.  Considering the rise in contributions that would be needed to achieve this goal 

(examined in the next section), this may well be the limit of what is politically feasible or 

socially optimal under an objective function of the type we introduce in Section VI. 

In any case, a more accurate label for the current policy would be something like “60 

percent funding” (of true liabilities) rather than “full funding.”  More generally, as we will 

formalize below, the way to integrate risk-free discounting of liabilities into a policy of 

accumulating risky assets with higher expected returns is to set the target funded ratio relative to 

true liabilities.  That target may well be less than 100 percent, but it would have the virtue of 

being accurate and, as we will show, such a policy will integrate the costs of risky investment 

with the benefits of reduced expected contributions. 

 
ratios exceed the calculated values, 5.7 vs. 4.3 and 7.2 vs. 6.1, respectively.  There are many potential explanations 

for these gaps, but they would be consistent with plans that are beyond mature, rather than in steady state. 
15 Federal Reserve series Z1/Z1/FL224190043.  The denominator in the ratio depicted is the PPD payroll series. 
16 Lenny, et. al.’s estimates of the funded ratio, using reported liabilities (2021 Table 1) and rediscounted liabilities 

(2021 Table A7) imply that the latter is about 80 percent higher. 

https://www.federalreserve.gov/releases/z1/default.htm
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/Lenney-at-al-Online-Appendix-05-27-2021.pdf
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Target Funded Ratio and the Steady State Contribution Rate 

The natural link between our steady-state analysis of asset accumulation and liabilities is 

to tie the asset goal, a*, to liabilities.  We here consider the general goal of a target funded ratio, 

f*, including both “full” actuarial funding, and such putative standards as “the 80 percent rule.”17  

Setting the asset goal of a* = f*λ*, and, for the moment, following the actuarial convention of d 

= r, we find, from (1*) and (2*): 

(3) c* = cp
 − (r − g)f*λ* = cp

 − f*(cp
 − cn) = (1− f*)cp + f*cn. 

As the funded goal varies from zero to full funding, the steady-state contribution rate varies from 

the pay-go rate to the normal cost rate, with a weighted average of the two for intermediate 

funding targets.  Thus, full actuarial funding is a special case, where the steady-state contribution 

rate is cn (discounted at r), reached upon completion of the amortization schedule. 

 Let us now consider the steady-state implications of a dual rate system:  discount rate d 

for liabilities and assumed return r on assets.  We then have: 

(3') c* = cp
 − (r − g)f*λ* = cp

 – [(r − g)/(d – g)]f*(cp
 − cn). 

As before, if the funding goal f* is zero, the contribution target is pay-go, and as f* is set higher, 

the contribution target falls.  Our question here is the impact on c* of reducing d below r.   We 

have already seen from (1*) that the only avenue for a drop in d to affect c* is through its impact 

on the asset target a*.   Since we are considering asset goals of the form a* = f*λ*, this means 

that a drop in d below r would raise the target contribution rate through a rise in the liability ratio 

λ* unless it is offset by a reduction in the target funded ratio f*.   

 
17 See Costrell, 2018a, where equation (3) was previously derived. 

https://edre.uark.edu/_resources/pdf/coepjuly18.pdf
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If, for example, our funding goal is to merely maintain the current asset ratio, a* = a0, 

then the rise in λ* from revaluation at d would, in effect, be completely offset by an implicit drop 

in the target funded ratio f*.18  Under this simple goal, the distinct role of d drops out of (3'), and 

we are back at (1*) with c* = cp
 − (r − g)a0.  Setting d to a low-risk rate for the valuation of 

liabilities is here purely an accounting and reporting measure, unrelated to contribution policy, as 

discussed in Costrell and McGee (2020). 

More generally, let us consider the implications of setting d < r when f* is a deliberately 

chosen target (as discussed in a later section), rather than an artifact of maintaining the status 

quo.  The first implication is that under a full-funding policy, f* = 1 (or anywhere near full), c* < 

cn:  contributions will not cover normal costs (properly discounted).   Formally, (3') implies 

(3'') c* − cn = (cp
 − cn)(1 – [(r − g)/(d – g)]f*) < 0, for  f* >[(d − g)/(r – g)]. 

To fix magnitudes here, consider the values we have been using, r = 0.07 and g = 0.03, along 

with d = 0.04 (a typical discount rate used in private pension accounting).  The critical value of 

f* in the expression above is then 25 percent.  For any target funded ratio exceeding 25 percent 

of true liabilities, steady-state contributions need not cover the true normal costs (discounted at 

d).  This contrasts starkly with standard actuarial funding schedules, under which contribution 

rates drop to (but not below) reported cn (discounted at r) upon reaching full funding.  

The point can be illuminated by re-writing (3') and simplifying to obtain:19 

    (3*) c* = cp
 − (d − g)f*λ* − (r − d)f*λ* = (1− f*)cp + f*cn – (r − d)f*λ*. 

 
18 Specifically, the rise in λ* effectively reduces f* to a0/λ*, so (3') simplifies to c* = cp

 − (r − g)a0.  This is implicit 

in the model of Lenney, Lutz, and Sheiner (2019a; 2019b) and Lenney, et. al. (2021). 
19 We can drop the assumption of steady state in λ and obtain an expression with the same pieces and the same 

interpretation: ct = (1− f*)cp + f*cn – (r − d)f*λt.  This generalization of (3*) loosens the condition that assets and 

liabilities grow at the rate g; we require only that they grow at the same rate as each other, so that f is constant at f*. 

https://www.edworkingpapers.com/ai20-272
https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
https://www.brookings.edu/wp-content/uploads/2021/03/15872-BPEA-SP21_WEB_Lenney-et-al.pdf
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Comparing with (3), where d = r, we have a higher (rediscounted) normal cost rate, but the third 

term, which is negative, is new.  Under a deterministic interpretation of c* and r, this represents 

the implicitly assumed arbitrage profits between the return on accumulated assets and interest on 

covered liabilities.  These assumed arbitrage profits help defray the higher normal costs, in lieu 

of contributions that might otherwise be required. 

Alternatively, if c* and r are understood to be expected values of risky variables, the last 

term may be interpreted as the risk premium on the portfolio.  While this reduces the expected 

contribution rate, it simultaneously mirrors the implicit cost of risk borne by the sponsoring 

government.  This expression nicely captures the tradeoff between risk and return, to which we 

return in Section VI. 

 

V. CONTRIBUTION POLICY FOR CONVERGENCE TOWARD STEADY STATE 

Although steady-state calculations are instructive, they are not compelling unless there is 

a dynamic process that converges toward a steady state.  Moreover, that dynamic process, once 

determined, informs us of the expected costs along a transition path to the target asset ratio a*. 

Of course, the steady state is always a moving target, as the parameters cp, r, and g vary over 

time, but we can analyze whether the system moves in the right direction, taking these 

parameters as constants, at their projected values.   

In assessing the path to a*, we need not concern ourselves for the moment with the 

dynamics of the liability ratio, λt, given in (2'), although we will return to this below when we 

illustrate with CalSTRS data. Once we determine the steady-state liability ratio, λ* from (2*), 

and choose the target funded ratio f*, we have the target asset ratio a* = f*λ*.  This is all we need 

to map out a transition path for at, using equation (1') and a contribution policy ct to be specified.  
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As we will show, even with these simplifications, the determination of a smoothly convergent 

contribution policy is non-trivial. 

Convergence is not automatically assured, as can be discerned by considering the asset 

accumulation equation (1′) alone (before adding in a contribution policy equation).  To simplify 

notation, let R = 1+r, G = 1+g, and re-express (1′) as: 

(1″) at+1 = at(R/G) + (ct − cp)/G. 

For R > G (as usually assumed), the coefficient on the prior value of the state variable a exceeds 

one, which is destabilizing.   

For example, consider a policy that sets the contribution rate to some target rate and holds 

it constant.20  Unless that target rate corresponds to the steady-state value for maintaining the 

current asset ratio, the system will diverge.  Stated alternatively, suppose one aims at an asset 

ratio a* ≠ a0, and immediately sets c = c* (using (1*)), jumping up or down from c0, and holding 

it there.  The system will then move away from a*, rather than toward it.  If a* is set greater than 

a0, then at, will shrink further away from a*, and conversely if a* is set lower than a0.
21   

The reason is straightforward.  Setting a higher a* means setting a lower c* (see equation 

(1*)), since one expects to rely on higher investment income, in lieu of contributions, to cover 

benefits.  But since assets are not yet at that higher level of a*, the investment income falls short 

of that which would obtain in the steady state to which one aspires.  Thus, by prematurely setting 

contributions at the correspondingly low level, c*, one embarks on a path of asset decumulation.  

And conversely for a* < a0. 

 
20 Many states set a fixed rate in statute, instead of an actuarially varying rate.  Similarly, the Lenney, Lutz, and 

Sheiner (2019a; 2019b) policy simulation sets c equal to a steady-state value and holds it there. 
21 Formally, the solution is at = a* + (R/G)t(a0  − a*), which continually magnifies any initial deviation from a*. 

https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://www.brookings.edu/wp-content/uploads/2019/07/lenney_lutz_sheiner_MFC_Final.pdf
https://cehd.uchicago.edu/wp-content/uploads/2019/11/lenney_lutz_sheiner_SL_pensions_09_06_2019_U_chicago.pdf
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 So, what would a contribution policy look like that converges to a steady state targeted at 

a* with contributions c*?  It might be thought that an adjustment process that gradually closes 

the contribution gap between c* and ct, rather than a sudden jump to c*, would do the job, but as 

we shall see below, it will not.  The reason, as would be suggested by the discussion above, is 

that the contribution required to cover benefits depends on the asset gap between a* and at. 

Alternatively, then, one might suppose that an adjustment process for contributions based on the 

asset gap would fit the bill.  However, as we shall see, that will not suffice either.  For a 

convergent path, we will show that the policy should adjust contributions based on both gaps,22 

between c* and ct and between a* and at, in combinations to be derived below.   

Before doing so, note that the policy we are deriving differs not only from a discrete 

jump to c*, but also from the trajectory of actuarial funding policy.  The actuarial payment 

schedule typically sets either a constant percent of payroll, or ramps up to such a rate, and then 

falls off a cliff at the end of the amortization period, once full funding is expected to be 

achieved.23   The policy we derive below aims to converge smoothly on a steady state. 

Specifically, consider a contribution policy that starts by specifying a target asset ratio, 

a* (more on how that might be chosen, in Section VI), and calculates the corresponding steady-

state contribution rate c*, using (1*) above.  We then annually adjust the contribution rate based 

on the gaps between the target and actual values for assets and contributions: 

(4)   ct+1 = ct + β(c* - ct) + γ(a* - at), where β є (0,1). 

Along with (1″), we have a simple system of two linear difference equations to be analyzed using 

standard methods.  We derive the bounds on β and γ needed for convergence in the Appendix. 

 
22 Interestingly, the Taylor rule for optimal monetary policy is also a two-gap rule. 
23 This refers to “closed interval” amortization.  “Open interval” amortization extends the payoff date each year.  

Although commonly used in times past, open interval is no longer recommended by GASB. 
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The first convergence condition (see Appendix) is γ > β(R − G) ≡ γmin. This is positive 

for R > G, thereby showing formally what was asserted above:  a piece of the adjustment 

mechanism must be based on the asset gap, not just that of the contribution rate.  The logic is 

straightforward.  Suppose the contribution rate is already at its target c*, but the asset level is 

below the target a*.   Then contributions will have to rise in the short run to accumulate more 

assets, before eventually dropping back down toward c*.  

The second convergence condition, γ < G - R(1 – β) ≡ γmax, implies that the adjustment 

mechanism must include the contribution gap, too, β > 0.  Formally, since we must have γmax > 

γmin, this requires β > (R − G)/G > 0.  The logic here is also straightforward.  If assets are at their 

target ratio, but the contribution rate is below c*, then ct needs to rise. 

 As our discussion above suggests, the convergence toward steady state may not be 

monotonic.  Indeed, it may not only reverse direction once (asymptotically monotonic), it may be 

oscillatory.  The condition for non-oscillatory behavior, also given in the Appendix, is  

γ < G[(R/G) – (1 − β)]2/4 ≡ γm/o, where the subscript m/o denotes the boundary between 

monotonic and oscillatory. It can be shown that for γmax > γmin, γm/0 falls between the two.   

Thus, the asymptotic behavior of the system varies with the range of γ as given in Table 

2.  Figure 4 illustrates the combinations of β and γ that correspond to these asymptotic behaviors 

for r = 7% and g = 3%.  In general, it seems reasonable to presume that policymakers would 

prefer non-oscillatory convergence.  Thus, the relevant combinations of β and γ would lie 

between γmin and γm/o, depicted by the black and blue curves in Figure 4.  
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Deterministic Simulations:  Representative Plan 

Armed with these analytics, we illustrate the dynamic paths for contributions and assets 

under plausible policies.  Taking the representative FY20 plan assumptions given above, R = 

1.07, G = 1.03, cp = 0.38, c0 = 0.27 and a0 = 5, we set the target ratio a* = 7.  As discussed 

earlier, this increase of 40 percent above a0 would accumulate approximately the assets needed 

for “full" actuarial funding (discounted at the expected return), or about 60 percent of true 

liabilities (discounted at a low-risk bond rate).  Equation (1*) gives us c* = 0.38 – (0.07 – 0.03) × 

7 = 0.10 < c0 = 0.27, thus allowing eventually for a dramatically lower contribution rate.24   

The choice of adjustment parameters β and γ must navigate an intertemporal policy 

tradeoff.  Contributions need to rise in the short run to accumulate the assets required for the 

long-term reduction in c*.  Thus, the tradeoff is between speed of reaching c* vs. tempering the 

short-term rise in c required to reach a*.   

Suppose we set a target of approaching c* by year 30 (corresponding to a somewhat 

conventional time horizon for actuarial amortization schedules) and set the contribution 

adjustment parameter β equal to 0.5 (half speed).  Then we find that the tradeoffs are plausibly 

managed by choosing the asset adjustment parameter γ near the maximum value for monotonic 

convergence, γm/o = 0.075, on the blue curve in Figure 4.   

Figure 5 depicts the corresponding paths for the contribution rate (red curve, on the right 

scale) and asset ratio (blue curve, on the left scale).  This path raises the contribution rate for 

about 7 years to a maximum of 36 percent (a 9-point hike), before ultimately dropping down to 

approximately 10 percent by year 30.  Setting β any faster requires a sharper short-term rise in 

contributions and setting it any slower fails to approach c* that closely in 30 years. 

 
24 This estimate of c* is close to the average normal cost rate of about 13 percent, as reported using plans’ assumed 

return (depicted in Figure 1), and consistent with the steady-state result in (3) for “full” actuarial funding c* = cn(r). 



25 
 

Our dynamic analysis shows how to generate a smooth adjustment path to “full” funding, 

unlike the actuarial scenario of the contribution cliff envisioned upon completion of a closed 

interval amortization schedule.25  The path depicted is challenging:  it calls for a substantial rise 

in contributions over the near term. 

 

Deterministic Simulations:  CalSTRS 

We consider the case of CalSTRS to illustrate the contrast with actuarial funding 

schedules for a plan where the steady state is a moving target.  Not only is CalSTRS of general 

interest as one of the country’s largest plans, but CalSTRS also provides useful cash flow 

projections out to the end of its amortization schedule in 2046.  Importantly, this allows us to 

replace a constant benefit rate cp, with its projected rate, which rises significantly, from 47 

percent to 57 percent over the projection period, before starting to edge back down.26  We use 

these time-varying cash flows in our simulation, which has important impacts on the trajectory of 

asset accumulation and, accordingly, our adjustment path for contributions.   

In addition, the CalSTRS projections include liability figures.  These imply the liability 

ratio λ rises and falls over the projection period, as the plan gets over the hump in benefit 

payments.  Our simulation sets the target asset ratio to this moving target of “full” funding, a*(t) 

= λ(t) to keep assets from falling too far behind the ultimate target.   

The steady-state contribution rate is the reported normal cost rate cn(r), both under 

actuarial funding schedules and in our model, when the asset target is “full” actuarial funding (as 

shown in (3)).  Here, too, we let the target contribution rate c* = cn(r), vary over time as provided 

 
25 Open interval amortization has no such cliff, but often never approaches the funding target. (See, for example, 

Costrell 2018b, Figure 3.) 
26 This pattern reflects the rising ratio of retirees to actives and the retirement of later cohorts with lower benefits. 

https://www.cambridge.org/core/journals/journal-of-pension-economics-and-finance/article/accounting-for-the-rise-in-unfunded-public-pension-liabilities-faulty-counterfactuals-and-the-allure-of-simple-gainloss-summations/33A149AEC8C563453D825B1EA4133E87
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by CalSTRS in its projections, although the variation is minimal, from 20.4 percent to 19.4 

percent. Finally, CalSTRS sets R = 1.07, and G = 1.035, both of which we take as constants.   

Our 2-gap adjustment process (4), with the convergence bounds depicted in Figure 4, are 

designed for constant parameters, rather than the time-varying ones we see in practice.  So it is of 

some interest to see how well (or poorly) our process converges.  Given the rise in projected 

benefit payments discussed above, we chose somewhat slower adjustment parameters (e.g., β 

equal to 0.3 instead of 0.5) to keep the contribution amplitude manageable.  The resulting 

trajectories for contributions and asset accumulation are depicted in Figure 5a.    

For comparison, CalSTRS’ projected trajectories, under their actuarial funding policies, 

are also depicted.  As with most actuarial schedules, the contribution rate is scheduled to drop 

precipitously at the conclusion of the amortization period in 2046, from 34 percent to the normal 

cost rate of 19 percent.27  The CalSTRS schedule also features a notable drop in year 9, followed 

by a gradual rise through the end of the 24-year schedule. Such an idiosyncratic feature is not 

typical of actuarial schedules but does seem to illustrate how plans can arbitrarily schedule 

contribution relief after a good year in the market or other such developments.28   

Our alternative 2-gap schedule rises gently for a few years and exceeds the CalSTRS 

schedule for 13 years, leading to more rapid asset accumulation, before dropping below the last 

11 years of CalSTRS’ backloaded schedule.  By 2046, under the parameter values we have 

chosen for the 2-gap adjustment, contribution rates continue to smoothly decline, but would not 

yet drop to their steady-state value, unlike the CalSTRS schedule.  In short, the 2-gap adjustment 

 
27 Under current provisions, the state will provide an additional contribution of 3.5 percent, over and above the 

member and employer normal cost. 
28 CalSTRS features a volatile state contribution, on top of member and employer contributions, that fluctuates with 

asset gains and losses in a convoluted formula that amortizes past unfunded liabilities but generates new ones. 
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process traces out a smoother trajectory, eschewing opportunistic backloading and a less-than-

credible future funding cliff, for a more generationally rational contribution path. 

 Even so,  the potential long-term gain is by no means certain.  As noted previously, c* is 

highly sensitive to the assumed return.  Returning to our example of the representative fund 

depicted in Figure 5, at R = 1.05, instead of 1.07, c* = 0.24 instead of 0.10.  In this case the 

accumulation of assets requires a much larger hike in short-run contributions (over 20 points), 

for very little gain in the long-run.  Moreover, even if the assumed return is accurate in expected 

value, the distribution of outcomes can be very wide under stochastic returns. 

 

Stochastic Simulations 

Let us consider a stochastic model of the 2-gap path to “full” actuarial funding for our 

representative plan.  We ran Monte Carlo simulations of the adjustment path, with R distributed 

as lognormal, mean 1.07 and standard deviation of 0.15.29  Figure 6 depicts the trajectories for 

the contribution rate and asset ratio at the median, 25th, and 75th percentiles of their distributions.   

The first point to note is that the median of these distributions is indistinguishable from 

the deterministic trajectories depicted in Figure 5.  The mean (not depicted) differs, due to the 

asymmetry of the lognormal distribution, but would also track the deterministic case if the 

 
29 We estimated the standard deviation values associated with specific target returns using the publicly available, 

forward looking capital market assumptions published by Callan in early 2020 (pre-pandemic). We estimated the 

portfolio allocation that would generate each target return across a diversified portfolio including large cap U.S. 

equities (e.g., S&P 500), small/mid Cap U.S. equities (e.g., Russell 2500), Global ex-U.S. Equity (e.g., MSCI ACWI 

ex USA), real estate (e.g., NCREIF ODCE), private equity (e.g., Cambridge Private Equity), and aggregate U.S. 

bonds (e.g., Bloomberg Barclays Aggregate). We then applied that allocation using Callan’s estimated standard 

deviation and asset class correlations to calculate the associated standard deviation values for each return.  

The risk-return profiles generated by Callan and other vendors, used by plan managers, build on the insights of 

Merton’s (1973) three-fund theorem.  Portfolios that incorporate bonds (and other assets) negatively correlated with 

equities are superior to those of the basic CAPM asset mix of risk-free Treasuries and stock market funds.  

https://www.jstor.org/stable/1913811
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distribution were symmetric; this gives us some basis for interpreting the steady-state values we 

derived analytically as expected values, which will be useful in Section VI.  

That said, Figure 6 clearly shows the huge risk in these trajectories, as illustrated by the 

spread between the 25th and 75th percentiles.  Such risks are unavoidable, with investment in 

risky assets.  Moreover, the risk rises (the spread widens) over time, contrary to the popular 

notion that the good years and the bad years “average out” over time.30  Given the assumed asset 

allocation, the only latitude in managing that risk is the degree to which it falls on the 

contribution rate or the asset ratio.  Under the adjustment parameters depicted, which seemed 

reasonable for the deterministic case (β = 0.5, γ = 0.075), quite a bit of the risk falls on the 

contribution rate: the 25-75 percentile spread widens to over 50 percentage points by year 30.31,32 

The contribution risk can be reduced, pushing it instead onto asset risk, by dampening the 

adjustment parameters.  For example, if we cut γ in half to 0.0375, choosing a slower trajectory 

toward the targets of a* = 7 and c* = 0.10, we find a somewhat smaller contribution risk, as 

depicted in Figure 7. The 25-75 percentile spread is narrower than in Figure 6 (about 35 

percentage points, instead of 50) and the spread for the asset ratio (not shown, for purposes of 

clarity) is somewhat wider.  That said, as in the previous case, the 25-percentile asset ratio never 

dips as low as 4, and the risk of insolvency is negligible (unlike policy simulations with a 

constant contribution rate in papers mentioned above). 

To reiterate, these simulations are not meant to be policy prescriptions, but rather to 

illustrate how contribution policy might be reformulated, using adjustment parameters toward 

 
30 The law of large numbers applies to the average annual rate of return, but not to the total return, or the assets on 

which the return is earned.  Figures 6 and 7 visually illustrate the Fallacy of Time Diversification.  
31 The high probability of contributions going negative represents the chance of a run of good returns leading to 

asset accumulation far beyond the target, so excess assets are drawn down to pay benefits. 
32 Similar results hold for our CalSTRS simulation, depicted in Appendix Figure A.  Here we use CalSTRS’ (2023b) 

assumed standard deviation of 11.6 percent.  The 25-75 contribution rate spread is wider under the Callan 

assumption of 15.1 percent. 

ttps://www.calstrs.com/files/9f7aee9e8/DB-Valuation-2022.pdf
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asset and contribution targets. We believe this approach holds promise, compared to the current 

actuarial approach, even as it would require further refinement.  Such a policy would not 

mitigate risk – only a change in asset allocation would do that (as discussed in Section VI) – but 

illustrates how it can be deliberatively used to apportion risk between assets and contributions. 

It is, perhaps, noteworthy that the approach set out here is consistent with a formal result 

from stochastic control theory.  In a model with one state variable and one control variable (here, 

the asset ratio and contribution rate, respectively), and a quadratic loss function in the two 

variables, the optimal control is of the type we have considered:  linear in the two gaps.  

Moreover, as shown by Turnovsky (1974), the introduction of stochastic elements dampens the 

adjustment in the optimal control, resulting in slower response in the control variable, consistent 

with the example we have illustrated here in Figure 7 vs. Figure 5.  

Finally, we need an anchor for the asset accumulation goal.  That anchor has traditionally 

been based on liabilities, and reasonably so, but, as we have argued above, the target should be 

based on true liabilities, appropriately discounted.  Whether that target should be 100 percent of 

true liabilities or 60 percent, as in the a* = 7 simulations depicted (corresponding to 100 percent 

of actuarial liabilities) or something less, and how to approach that question, is the subject to 

which we now turn.  Our goal is, first, to integrate the insights from our previous analysis of the 

steady-state (expected) contribution rate, and the risk thereof, into a simple decision framework 

for the target funded ratio and asset allocation.  Finally, using the asset allocation condition and 

the risk-return tradeoff, we can provide new insight into the bases for asset accumulation. 

 

 

 

https://www.jstor.org/stable/1814888
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VI. CHOOSING THE TARGET FUNDED RATIO:  A STYLIZED OPTIMIZATION FRAMEWORK 

The approach we sketch out here begins with a very simple (and, hence, only semi-

formal) objective function representing the two main tradeoffs: short-run vs. long-run costs and 

expected future contributions vs. risk.  For a normative interpretation, this may be considered a 

social welfare function, or, alternatively, for a positive interpretation, we may consider it as the 

policymakers’ stylized objective function (which may depart from the taxpayers’ interest).   

We abstract from specific features highlighted in the literature above, such as 

distortionary taxation, developed to model departures from Ricardian and MM irrelevance. 

Instead, our setup can be thought of as a “reduced form” incorporating these various frictions or, 

instead, representing policy-makers’ implicit assumption that taxpayers and investors simply do 

not offset funding policies by their individual actions, as the irrelevance theorems maintain.   

Given this setup, we analyze the joint optimization of the funded ratio and asset risk.  

Using our results from (3*) in this framework allows us to present the marginal benefits and 

costs of these choices in readily understood terms and helps clarify the logic of pre-funding, 

incorporating the public’s (or policymaker’s) tolerance for risk imposed on future taxpayers.    

Specifically, our optimization analysis exploits the insights from our steady-state result 

that distinguishes between r and d.  In so doing, we arguably help resolve a bit of schizophrenia 

in the debate over actuarial discount rates.  It is increasingly (if grudgingly) recognized, even by 

non-economists, that liabilities should be discounted at a low-risk rate corresponding to the 

guarantee of promised benefits.  Yet finance economists typically restrict their conclusion to 

reporting requirements, and not necessarily to funding policy.  Our approach integrates dual rates 

– specifically, the risk premium (r – d) – into a framework for funding policy that simultaneously 

represents the benefits and costs of funding future pension payments from risky assets.   
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Here is our framework.  In general terms, the asset risk and target funded ratio should be 

based on the preferences (social or policymaker’s) for intergenerational sharing of cost and risk.   

Thus, we posit a stylized objective function: 

 –V[(a* – a0), E(c*), σ(c*)],  

where (a* – a0) is a shorthand measure of the costs required (non-discounted) over some period 

to reach the asset target; E(c*) is the expected value of the steady-state contribution rate at the 

asset target; and σ(c*) is the risk of c* from relying on asset income.  Since these arguments to V 

are “bads,” we preface V with a minus sign,33 so the partials V1, V2, and V3 are positive.   

More precisely, let us think of c* as the contribution rate ct  as t gets large (e.g., t = 30), 

by which point E(ct) approaches the steady-state value E(c*) given by (3*). Similarly, we can 

think of σ(c*) as the corresponding contribution risk, σ(ct), but it is not a steady-state value, since 

risk continually rises, as discussed above and shown below. We may instead think of it as the 

future contribution risk as the expected contribution rate approaches its steady-state value.   

Specifically, for analytical purposes we posit: 

(5)  σ(ct) = s(σ(r); t, β, γ)f*λ* ≡ S(r; t, β, γ)f*λ*. 

This formulation lets the contribution risk rise with time, as illustrated in our simulations below.  

At any given time (e.g., t = 30), we express the contribution risk as a general function s of the 

annual risk of r, σ(r), which itself is a function of the annual risk premium, (r – d), where d is 

considered a parameter.  As we shall see, the shape of the composite function S(r; t=30, β, γ) ≡ 

s(σ(r); t=30, β, γ) will be important below but is left unspecified here.  

The one substantive assumption in (5) is that the long-term contribution risk is 

multiplicative in the target asset ratio a* = f*λ*.  This assumption is analytically convenient, as it 

 
33 Equivalently, we could cast the problem as minimizing V[(a* - a0), E(c*), σ(c*)]. 
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mirrors the fashion in which a* = f*λ* enters E(c*) in (3*).  Fortunately, this assumption appears 

to be a very close approximation for our simulations of σ(c30) – which we take to illustrate σ(c*) 

– as we vary a* in the relevant range.34   

The key take-away from this formulation is the parallel role of (r – d) in E(c*) and σ(c*) 

in (3*) and (5) (via σ(r)).  Thus, we simultaneously represent both the benefit and cost of the 

chosen degree of risk. 

 

Optimal Asset Risk 

The optimization problem requires a joint decision on two instruments: (i) the risk profile 

of the asset allocation, formally represented by the target return r (for given d); and (ii) the target 

funded ratio, f*.  Taking these in turn, we first optimize –V[(a* - a0), E(c*), σ(c*)] over r, 

conditional on the funding target f*. The choice variable r enters E(c*) and σ(c*) through the risk 

premium, (r – d).  Thus, from (3*), we have dE(c*)/dr = −f*λ*, and from (5), we have dσ(c*)/dr 

= S'(r)f*λ*, where, for notational simplicity, we omit the parameters, (t=30, β, γ).  Consequently,  

        (6) – dV[(a* - a0), E(c*), σ(c*)]/dr =  – V2 dE(c*)/dr – V3 dσ(c*)/dr  

      = [V2  – V3S'(r)]f*λ*. 

The bracketed term simply represents the balance of weights between additional risk and return. 

We assume there is an interior optimum for (6) with r > d,35 where V2 = V3S'(r). 

Figures 8A and 8B illustrate the tradeoff between the future contribution rate and risk for 

selected target rates of return.  These simulations are similar to those above but depict risk with 

the standard deviation of the contribution rate over time, rather than the 25-75 spread.  As above, 

we use the Callan (2020) capital market assumptions, but vary the composition of the portfolio to 

 
34 Specifically, we find that as we raise a* from 7 to 9, the ratio of σ(c30) to a* varies by less than one percent. 
35 This would hold, for example, with a quadratic objective function. 
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obtain the target returns depicted.  These assumptions generate σ(r), which feed into the 

simulations that generate outcomes for ct.   

Figure 8A depicts the trajectories for the median contribution rate, as r varies from 4 

percent to 7 percent.36  The lower trajectories for higher target returns illustrate the benefit, in 

lower future contributions, from more aggressive asset allocations.   

Figure 8B depicts trajectories for the standard deviation of the contribution rate, as r 

varies.37  The higher trajectories for higher target returns illustrate the cost from riskier asset 

allocations. Moreover, the rate at which the risk rises (the gaps between the curves in Figure 8B) 

exceeds that of the benefit (the drop between the curves in Figure 8A).  That is, the “price” of 

seeking higher returns rises as the plan gets more aggressive.38  This corresponds to the 

convexity of the composite function S(r) in (5), as will be important below. 39 

 

Optimal Target Funded Ratio 

We now turn to our main focus, the optimization of –V[(a* - a0), E(c*), σ(c*)] over the 

choice variable f*.  We consider the marginal impact of raising the funded ratio.  Qualitatively, 

the benefit is the reduction in the long-run expected contribution rate, E(c*), and the two costs 

are the short-run rise in contributions to accumulate more assets, (a* - a0), and the increased risk 

of c*, from raising the portion of future benefit payments defrayed by risky investment income.    

 
36 As noted earlier, the mean contribution rate is lower due to the asymmetry of the distribution of r under the 

lognormal assumption. This deviation between mean and median contribution rate is fairly minimal by year 30 for r 

= 4% and 5%.  It widens notably by year 30 for r = 6% and quite substantially for r = 7%. 
37 Note that the low-risk portfolio, r = 4%, is not risk-free.  That is because the fixed rate bond portfolio (r = 2.75%) 

is not risk-free (σ(r) = 3.75%) and, to reach the target return of 4%, one must add an equity component.  Thus, 

although our simulations illustrate the analysis below, they do not accord exactly with the risk-free assumption. 
38The change in year-30 risk per unit change in median contribution rises from 0.9 to 2.6 as r varies from 4% to 7%. 
39 We also use CalSTRS’ (2023a) capital market assumptions (pp. 10-11) to generate similar simulations.  See 

Appendix Figures B and C.  Note that these assumptions generate σ(r=7%) = 10.5%, which differs from CalSTRS’ 

(2023b) valuation report assumption (p. 51) that σ(r=7%) = 11.6%, as used in Appendix Figure A. 

https://www.calstrs.com/files/53dd34e25/A-InvestmentPolicyandManagementPlan01-2023.pdf
https://www.calstrs.com/files/9f7aee9e8/DB-Valuation-2022.pdf
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Formally, we consider the three pieces of 

(7)  – dV[(a* - a0), E(c*), σ(c*)]/df* = – V1 da*/df* – V2 dE(c*)/df* – V3 dσ(c*)/df*. 

The first piece is the marginal cost in the short run to accumulate more assets, a* = f*λ*:   

(8) – V1 da*/df* = – V1 λ*. 

The second piece is the marginal benefit of reducing the expected long-run contribution rate, 

E(c*), by raising f*.  From (3*), we have: 

(9)  – V2 dE(c*)/df* = V2 [(cp − cn) + (r − d)λ*].  

Note that the magnitude of this benefit depends on how aggressive the asset allocation is, (r – d).  

Taking these first two pieces of (7) together and using (2*) for λ*, we find the net benefit 

(ignoring the cost of risk for the moment) of raising the target funded ratio is positive if V2 (r – g) 

> V1.  This condition is just a simplified version of the usual intergenerational tradeoff.  Suppose, 

to take the simplest example, the accumulation of additional assets is immediate.  The 

subsequent reduction in the contribution rate, as a percent of payroll, represents a perpetuity that 

grows at rate g.  Then, if social (or policymakers’) cost is simply the present value of current and 

future contributions, discounted at rate δ, we find V1 =1 and V2 = 1/(δ − g).  Consequently, the 

net benefit is positive if and only if (r – g)/(δ − g) > 1, i.e., δ < r, a standard result.40   

Finally, the third term in (7) is the marginal cost of the increased risk from relying on the 

additional income generated by asset accumulation.  Using (5) for σ(c*), we have: 

      (10) – V3 dσ(c*)/df* = – V3S(r)λ*. 

Pulling these three pieces together, we have: 

(7') – dV[(a* - a0), E(c*), σ(c*)]/df*  

= – V1 λ* + V2 [(cp − cn) + (r − d)λ*] – V3S(r)λ*. 

 
40 Adding convexity to the annual disutility of contributions is straightforward. 
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As discussed earlier, the risk premium, (r − d), simultaneously conveys the benefit and the cost 

of risky investment.   These are reflected in the second and third terms above, respectively, since 

S(r) ≡ s(σ(r)) and σ(r) is a function of (r − d).   

In the second term above, it is important to reiterate that cn is discounted at d, not r.  

Thus, the gap between cp and cn is much narrower than under actuarial accounting.  The benefit 

from asset accumulation is smaller in that regard but enhanced by the risk premium.  We can 

further clarify how the costs and benefits of risky investment net out here by regrouping terms in 

(7') and substituting from (6), the optimality condition for the target return, V2  = V3S'(r): 

(7'') – dV[(a* - a0), E(c*), σ(c*)]/df*  

= – V1λ* + V2 (c
p − cn) + [V2(r – d) – V3S(r)]λ*. 

= – V1λ* + V2(c
p − cn) + V2[(r – d) – S(r)/S'(r)]λ*. 

Our analysis assumes d is risk-free, so S(r=d) = s(σ(r=d)) = 0.  Thus, S'(r) > S(r)/(r – d), if S(r) 

is convex, as alluded to above (and discussed further below).  This means the bracketed term is 

positive: the marginal benefit from reducing future contributions by the extra income from 

additional risky assets outweighs the cost of the extra risk.41   

Heuristically, we may think of this convexity result as follows.  If policymakers assess 

the convexity of S(r), then they willingly accept the relatively high marginal impact on risk, S'(r), 

of their asset allocation decision.  Based on (6), this decision implies a low aversion to future 

risk, V3, relative to the value they place on the benefits of expected return, V2.  Carrying this 

inference from (6) over to the asset accumulation decision, (7''), the bracketed term on the second 

 
41 This result would be mitigated by consideration of the impact of higher r on short-term contributions, assumed 

away here by the undiscounted formulation of our first term in V.  Expanding (6) to incorporate the favorable impact 

of higher r on short-term (as well as long-term) contributions would imply V3S'(r) > V2, representing a greater 

willingness to tolerate risk of future contributions.  This would reduce the bracketed term in (7'').  That said, the 

convexity of the long-run risk-return relationship would still be an important factor in the basis for pre-funding, 

examined below, if not in quite so stark a form. 



36 
 

line shows how the relatively low risk aversion implies a greater willingness to accumulate assets 

for the net benefit of the risk premium.  As we will show below, this can play a significant role in 

the basis for pre-funding vs. pay-as-you-go. 

 

Convexity of Long-Run Risk-Return and the Bases for Pre-Funding 

Convexity of the composite function S(r) = s(σ(r)) depends on the convexity of both s(σ) 

and σ(r), where s(σ) relates the risk of the long-run contribution rate to that of the annual return 

and σ(r) gives the risk of the annual return as a function of its expected value. Under basic 

portfolio theory, where assets are simply a mix of the risk-free asset and the market portfolio, 

σ(r) is linear.  Under the more complex capital market assumptions we use for our simulations – 

based on the insights of Merton (1973) – σ(r) embeds some convexity in the annual risk but that 

convexity appears to be swamped by the long-run convexity of s(σ).  

As Figure 9 shows, S(r) ≡ s(σ(r); t, β, γ) is notably convex for t = 30. This contrasts with 

the near-linear appearance of σ(r), superimposed on the same graph.42  Thus, we infer that the 

lion’s share of S(r)’s convexity is due to that of s(σ), the non-linear impact on the long-run 

contribution risk of the risk in annual returns, rather than the non-linearity of the annual risk-

return relationship.   This convexity of S(r) is apparently due to compounding of risk over time, 

as illustrated by the comparison between the curvature of S(r) for t = 30 and t = 15. 

To formalize the convexity of σ(ct) = s(σ(r); t)a* ≡ S(r; t)a* would be intractable, but 

perhaps the following approximation provides some insight.  Note first, from (1*) that c* = cp
 – 

(r – g)a*.  We conjecture that the vast majority of the deviation of ct from c* is due to that of at 

 
42 The results are similar for our simulations of CalSTRS; see Appendix Figure D. 

https://www.jstor.org/stable/1913811
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from a*, where the latter spread is depicted in Figure 6.  If so, then σ(ct) ≈ (r – g)σ(at).  Taking R 

as distributed log-normal, then the basic result, σ(at) = σ(r)a*√t implies  

σ(ct) ≈ (r – g)σ(r)a*√t, so d2σ(ct)/dr2 = [(r – g)σʺ(r) + 2σʹ(r)]a*√t. 

Thus, even if σ(r) is linear (σʺ(r) = 0), we have convexity, especially as t gets large. 

Returning to (7''), at the joint optimum the marginal cost of accumulating more assets (the 

first term in (7'')) is balanced by two marginal benefits (the second and third terms in (7'')).  The 

reduction in steady-state contributions from pre-funding at r = d instead of pay-go is (cp − cn); 

and the net benefit from the additional income from risky assets is [(r – d) – S(r)/S'(r)]λ*, where 

the latter term is governed by the convexity of S(r).   

We can gain some purchase on the potential relative magnitude of these two benefits by 

further analysis of these two terms.  Substituting from (2*) for λ*, and rearranging, we find: 

(11)  (cp − cn) + [(r – d) – S(r)/S'(r)]λ* = (cp − cn){1 + [1 – (S(r)/(r – d))/S'(r)](r – d)/(d – g)} 

                                                           = (cp − cn){1 + [1 – arc slope/tangent](r – d)/(d – g)}. 

Here, arc slope is the slope of the arc of S(r) over the interval (d, r) and tangent is the slope at r.  

(See Figure 9.)  By convexity, the slope of the tangent exceeds that of the arc to the left of r, so 

(1 – arc slope/tangent) is a measure of the convexity of S(r) at r, over the interval (d, r).  

To illustrate magnitudes, let d = 0.04 and g = 0.03 and consider the arc slope and tangent 

from Figure 9. For r = 0.07, we estimate arc slope/tangent at about 11.3/25.5 = 0.44, which 

implies the net benefit from risky investments is about (1 – 0.44)(0.07 – 0.04)/(0.04 – 0.03) = 

1.67 times the straight pre-funding benefit, (cp − cn).  At r = 0.06, we estimate that multiple 

drops to about 1.09 times (cp − cn), i.e., still doubling the straight pre-funding benefit.  At r = 
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0.05, the multiple drops to about 0.48. These estimates are by no means dispositive; they merely 

illustrate the potential relative size of the two marginal benefits from accumulating more assets.43 

This exercise leads us to re-examine the basis for pre-funding in light of the dual rates.  

By properly discounting liabilities at d instead of r, the normal cost rate is dramatically elevated, 

and (cp − cn) is greatly diminished; it rests on the gap between d and g instead of the much wider 

gap between r and g.44  It is the latter gap that is often taken as the basis for pre-funding. That is 

also what underlies the actuarial goal of “full” funding and, ultimately, contributions at the 

normal cost rate (discounted at r) instead of the much higher pay-go rate.  Our analysis suggests 

that the much narrower gap between cp and cn (discounted at d) might well be a less powerful 

motive for pre-funding than the exploitation of risky investments.45  We show how the relative 

weight of these two bases for pre-funding depends on policy-makers’ choice of target return. 

Finally, we should emphasize that the object of our analysis, the optimal funded ratio f*, 

is applied to a much higher liability ratio, λ*, discounted at d. Thus, even if the above analysis is 

taken to suggest less-than-full funding, it does not resolve the issue of whether current funding 

targets (100 percent of reported liabilities or 60 percent of true liabilities) are too high or too low. 

A low target funded rate for true liabilities may well exceed current funding targets. 

 

VII. CONCLUSIONS AND FUTURE RESEARCH 

Standard actuarial practice pursues intergenerational equity and sustainability by 

employing funding rules that seek to ensure each generation pays for the services it receives. 

 
43 Our estimates for CalSTRS, using Appendix Figure D, are much higher, since CalSTRS assumes g = 0.035. 
44 Lenney, et. al. (2021 Table A9) rediscount normal cost higher than the pay-go rate, apparently assuming d < g.   
45 In the limit, as d → g, cn → cp, so the second term in (7''), V2(cp − cn), vanishes.  By L’Hôpital’s rule, as d → g, λ* 

= (cp
 − cn)/(d − g) → −cn'(d), so it does not vanish from the first term of (7'').  Thus, in this limiting case, as d → g, 

there will be no interior solution for f* in the absence of the third term.   

https://www.brookings.edu/wp-content/uploads/2021/03/Lenney-at-al-Online-Appendix-05-27-2021.pdf
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These rules operate through the concepts of normal cost and amortization, which, together, aim 

to fully fund benefits for each cohort of workers and taxpayers. Normal cost is meant to pre-fund 

the full cost of benefits earned by a cohort of employees over their careers, while amortization is 

meant to close funding gaps that result from payment shortfalls and unrealized assumptions. 

In practice, these rules have failed to achieve intergenerational equity or sustainability.  

The true market cost of earned benefits and of asset risk have been understated, leading to the 

accumulation of large pension debt and steeply rising contributions to amortize that debt.  These 

payments are crowding out spending in other areas like infrastructure and education, as current 

generations pay for past benefits and new debt accrues (McGee, 2016, Biggs et. al., 2022, 

Costrell and McGee, 2022).  Going forward, neither intergenerational equity nor sustainability 

are embedded in a deliberative policy choice framework that adequately considers the risks 

involved for future generations of public workers and taxpayers. 

The shortcomings of the actuarial approach lie not only in practice, but in theory, as 

discounting by the expected return fails to convey the cost of risk.  The reformulation we 

propose goes back to fundamentals, properly discounting liabilities and incorporating the 

portfolio’s risk premium into contribution policy to simultaneously represent the benefits and 

costs of risky investment.   

Our approach is organized around steady-state analysis, to operationalize the concept of 

sustainability.  The result of our analysis can be thought of as replacing both pieces of actuarial 

contributions:  normal cost and amortization, in a way that explicitly recognizes long-run 

contribution risk.  These pieces are embedded in a framework where the properly discounted 

target funded ratio is a choice that depends on both the risk and the return from investment in 

risky assets, and which may well differ from full funding at the risk-free rate. 

https://media4.manhattan-institute.org/sites/default/files/R-JM-1016.pdf
https://www.urban.org/research/publication/addressing-and-avoiding-severe-fiscal-stress-public-pension-plans
https://www.infoagepub.com/products/Recent-Advancements-in-Education-Finance-and-Policy
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Specifically, normal cost is effectively replaced by the steady-state expected contribution 

rate, derived from the laws of motion for assets and liabilities and the target funded ratio.  As a 

result, the steady-state contribution rate: (i) broadens the normal cost piece (wrongly discounted) 

to a blend of normal cost (properly discounted) and pay-go, weighted by the target funded ratio; 

and (ii) folds in the benefit of excess returns (r – d) in exchange for the risk borne by the 

sponsoring government and future taxpayers. 

Instead of an amortization schedule, our approach specifies an adjustment process to the 

target contribution rate and asset ratio.  We have shown how to set the adjustment parameters, 

starting with the deterministic case.  However, as we also show, in a stochastic world, the risk 

widens over time, even as the contribution rate approaches a steady state in expected value.  We 

show how the adjustment parameters might be modified from the deterministic case to better 

manage risk.  That choice of parameters must navigate the tradeoff between lower contribution 

risk and speed of adjustment toward the targets.  We also illustrate how such a policy can be 

tailored, outside of steady state, to moving targets, with the example of CalSTRS. 

Finally, we sketch out a stylized optimization framework for choosing a target funded 

ratio, f*, as applied to true liabilities (i.e., discounted risk-free at d), and a target expected return 

on assets, r, with its associated risk. This simple framework balances intergenerational equity, 

the quest for returns, and investment risk based, ideally, on the policymakers’ assessment of 

public preferences, or, more likely, their own incentive structure.46  Incorporating our steady-

state results into this simple framework sheds new insight on the costs and benefits of asset 

 
46 Unlike much of the literature reviewed above, we do not start from the irrelevance theorems of Ricardian 

equivalence and Modigliani-Miller, whereby taxpayers offset public decisions on debt and risk by their own 

spending and portfolio decisions.  Our stylized framework might be interpreted as a reduced form incorporating the 

various frictions (e.g., distortionary taxes) that undermine the irrelevance theorems, as carefully examined in prior 

literature, or, alternatively, as representing policy-makers’ belief (rightly or wrongly) that such offsetting private 

behavior is not important. 
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accumulation. The standard rationale for pre-funding vs. pay-go (cn < cp), is attenuated by 

properly discounting normal costs but is augmented by the net benefit of the excess returns from 

risky investments.47  

The net benefit of those excess returns depends on the combination of policymakers’ 

tolerance for risk to be imposed on future taxpayers, on the one hand, and, on the other hand,  the 

convexity of long-run risk with respect to the expected return. The relevant measure of convexity 

varies with the optimal target return and asset risk.  We illustrate the menu of such risk-return 

profiles to show that this second rationale for pre-funding – the net benefit of excess returns – 

can be quite substantial and even outweigh the traditional rationale for pre-funding.   

To be sure, the optimization framework we present is nice, but not necessarily descriptive 

of current practice.  Indeed, under actuarial practice, the asset target decision (a*) does not 

appear to be based on any optimization framework, implicit or explicit. Rather, a* is simply set 

at 100% of the actuarial calculation of liabilities, corresponding to about 60% of true liabilities. 

However, given the latitude plans seem to exercise in choosing the discount rate and other 

assumptions, one might interpret these decisions as, in effect, reverse engineering asset and 

contribution targets to satisfy policymaker preferences over some heuristic objective function. 

To speculate along these lines, we could characterize common critiques of pension 

funding policy as: (i) understating V2 relative to V1 – excess time preference; (ii) under-

estimating the social cost of risk borne by future taxpayers, V3 relative to V2 – insufficient risk 

aversion; or (iii) underestimating the amount of risk, σ(c*), perhaps due to misplaced confidence 

in time diversification, excessive self-confidence in investment acumen based on past good luck 

 
47 Although Bohn’s (2011), main result is zero pension funding, he alludes to the possibility that if voters believe 

active fund management can beat the market, this may help explain the practice of pre-funding. 

https://doi.org/10.1017/S1474747211000096
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(Andonov and Rauh, 2022), and/or the distorted incentives from U.S. public pension accounting 

rules (Andonov, Bauer, and Cremers, 2017). 

Would a proper evaluation of the true social costs and benefits lead us to raise or reduce 

the target asset accumulation? Equation (7') shows that excessive time preference reduces the 

target (the second term) and insufficient risk aversion raises it (the third term).  This leads us to 

an inconclusive assessment of whether the target funded ratio is too high or too low.   

What does our analysis say about how the steady-state expected contribution rate 

compares with the actuarial rate, namely the wrongly discounted normal cost rate?  The question 

ultimately comes down to the accuracy of the expected return.  As we saw in discussion of (1*), 

if the asset target a* = 7 is about right, then for r = 7 percent and g = 3 percent, the steady-state 

contribution rate of about 10 percent (depicted in Figures 5 and 6) is in the same ballpark as the 

reported normal cost rate of about 13 percent (depicted in Figure 1).  If, however, r = 6 percent, 

then c* = 17 percent, exceeding the reported normal cost rate, and at r = 5 percent, c* = 24 

percent, much higher yet. 

In any case, the prospect of any steady-state relief from the current contribution rate of 27 

percent is small consolation, given the transition paths to a* = 7 depicted in these figures, even 

for r = 7 percent.  These paths exhibit substantial short-term hikes, dramatically widening risk, 

and quite possibly never declining at all.  Choosing a less aggressive portfolio and judicious 

adjustment parameters reduces the risk, but also reduces the prospect of substantial long-run 

decline in contributions. 

In short, there are no perfect choices, but there may be better and worse ones.  Our hope 

is that the analysis provided here helps elucidate the tradeoffs involved in pursuit of pension 

funding sustainability and intergenerational equity, and how these tradeoffs might inform the 

https://academic.oup.com/rfs/article/35/8/3777/6433685
https://academic.oup.com/rfs/article/30/8/2555/3745296
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approach to contribution policy we propose.  It is an approach that integrates proper liability 

discounting with clearer consideration of the benefits and costs of risks in setting asset and 

contribution targets, while pointing the way to a deliberative process of adjustment toward those 

targets and managing the risks better than current policies.  

Our analysis and proposed funding approach lead us to several potentially fruitful areas 

for future work. While we use CalSTRS as a real-world example in this paper, applying our 

approach to historical and/or projected data for a broader set of public plans and comparing our 

approach to actual/expected performance will provide a more comprehensive picture of how well 

it might perform. Relatedly, this will afford the opportunity to delve further into the impact of 

non-steady-state dynamics due to changing dependency ratios, benefit levels, payroll growth, 

etc., which remains a significant area of uncertainty in the current analysis.48  We hope to do 

more to develop rules for choosing (and potentially modifying) adjustment parameters in a 

dynamic environment.  Finally, we hope to develop simple quantitative measures of the tradeoffs 

underlying our approach that could practicably inform policymakers’ choice of target funded 

ratio as applied to true liabilities.  

 
48 Other important risks include inflation, longevity and worklife assumptions.  One might also explore how to pair 

our proposed approach with other levers for managing risk (e.g., COLA adjustments).   
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APPENDIX:  CONVERGENCE CONDITIONS 

We can usefully express the system (1″) and (4) in matrix form: 

[
𝑎
𝑐

]
𝑡+1

= [
(𝑅/𝐺) (1/𝐺)

−𝛾 (1 − 𝛽)
] [

𝑎
𝑐

]
𝑡

+ [
(−𝑐𝑝/𝐺)

(𝛾𝑎∗ + 𝛽𝑐∗)
] . 

Denote the transition matrix above by A.  The asymptotic stability condition (see Neusser (2021), 

equation (3.18), p. 84) is:  |tr (A)| < 1 + det(A) < 2.  In the present case, this implies 

(i) γ > β(R − G) ≡ γmin > 0, and 

(ii) γ < G - R(1 – β) ≡ γmax. 

The condition for asymptotic oscillation is [tr (A)]2 < 4‧ det(A), or, in the present case:  

(iii) γ > G[(R/G) – (1 − β)]2/4 ≡ γm/o. 

  

http://www.neusser.ch/downloads/DifferenceEquations.pdf
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Table 1:  Pension Funding Notation 

 

A = assets on hand 

L = accrued liabilities, the present value of future benefits earned to date 

f = funded ratio, A/L (full funding goal is f = 100%) 

W = payroll 

a = A/W = assets/payroll 

λ = L/W = liabilities/payroll 

c = contribution rate, % of payroll 

cp = benefit payments as % of payroll (“pay-go rate”) 

cn = newly accrued liabilities as % of payroll (“normal cost rate”) 

r = return on assets; R = (1+r) 

d = discount rate used to calculate present value of liabilities; D = (1+d) 

g = growth rate of payroll; G = (1+g) 

 

 

 

 

Table 2: Convergence Conditions for Adjustment Parameters 

ct+1 = ct + β(c* - ct) + γ(a* - at) 

Range of γ Asymptotic Behavior of (1″)-(4) 

γ < γmin ≡ β(R − G) Monotonic divergence 

γmin < γ < γm/o ≡ G[(R/G) – (1 − β)]2/4 Monotonic convergence 

γm/o < γ < γmax ≡ G - R(1 – β) Oscillatory convergence 

γmax < γ Oscillatory divergence 
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Source: Center for Retirement Research at Boston College
MissionSquare Research Institute, and National Association of State Retirement Administrators

Figure 1. Normal Cost, Contribution and Benefit Rates, FY01 − FY20
Public Plans Data: 119 state & 91 local plans
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Normal Cost Rate (cn), as reported, 
using assumed return (r)

Amortization Payments on UAL



50 
 

 

0

1

2

3

4

5

6

7

8
F

Y
0

1

F
Y

0
2

F
Y

0
3

F
Y

0
4

F
Y

0
5

F
Y

0
6

F
Y

0
7

F
Y

0
8

F
Y

0
9

F
Y

1
0

F
Y

1
1

F
Y

1
2

F
Y

1
3

F
Y

1
4

F
Y

1
5

F
Y

1
6

F
Y

1
7

F
Y

1
8

F
Y

1
9

F
Y

2
0

M
u

lt
ip

le
 o

f 
C

o
v

e
re

d
 P

a
y
ro

ll

Source: Center for Retirement Research at Boston College
MissionSquare Research Institute, and National Association of State Retirement Administrators

Figure 2. Assets/Payroll, FY01 − FY20
Public Plans Data: 119 state & 91 local plans

Asset Ratio (a = A/W)
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Sources: Center for Retirement Research at Boston College, Federal Reserve Board of Governors & authors' calculations
Both series use PPD payroll

Figure 3. Assets & Liabilities, True & Reported, FY01 − FY20

reported liability ratio (λ = L/W), 
using assumed return (r)

true liability ratio (λ = L/W), 
using bond rate (d) 

Asset Ratio (a = A/W)
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Figure 5.   Simulation of Trajectory to "Full" Actuarial Funding 
R = 1.07, G = 1.03, a* = 7.0, c* = 0.10, β = 0.5, γ = γm/o = 0.075
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Figure 5a.   Contribution Trajectory, CalSTRS vs. 2-Gap Adjustment 
R = 1.07, G = 1.035, a*(30) = 9.4, c*(30) = 0.19, β = 0.3, γ = γm/o = 0.029
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Figure 6.   Stochastic Simulation of Trajectory to "Full" Actuarial Funding
R ~ lognormal(μ = 1.07, σ = 0.15), G = 1.03, a* = 7.0, c* = 0.10, β = 0.5, γ = γm/o = 0.075

Median Asset Ratio (left scale)

Median Contribution Rate (right scale)

25 Percentile Contribution Rate (right scale)

75 Percentile Contribution Rate (right scale)

25 Percentile Asset Ratio (left scale)

75 Percentile Asset Ratio (left scale)
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Figure 7.   Stochastic Simulation of Slower Trajectory to "Full" Actuarial Funding
R ~ lognormal(μ = 1.07, σ = 0.15), G = 1.03, a* = 7.0, c* = 0.10, β = 0.5, γ = 0.0375

Median Asset Ratio (left scale)

Median Contribution Rate (right scale)

75 Percentile Contribution Rate (right scale)

25 Percentile Contribution Rate (right scale)
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Figure 8A.  Median Contribution Rate, Varying Risk and Return

r = 4%, σ(r) = 4.4% r = 5%, σ(r) = 7.2% r = 6%, σ(r) = 10.6% r = 7%, σ(r) = 15.1%
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Figure 8B.  Standard Deviation of Contribution Rate, Varying Risk and Return

r = 4%, σ(r) = 4.4% r = 5%, σ(r) = 7.2% r = 6%, σ(r) = 10.6% r = 7%, σ(r) = 15.1%
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Figure 9:  Convexity of Contribution Risk and Annual Return
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Appendix Figure A.   Stochastic Simulation of Trajectory for CalSTRS
R ~ lognormal(μ = 1.07, σ = 0.116), G = 1.035, a* = 9.4, c* = 0.19, β = 0.3, γ = γm/o = 0.029

Median Asset Ratio (left scale)

Median Contribution Rate (right scale)

25 Percentile Contribution Rate (right scale)

75 Percentile Contribution Rate (right scale)
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Appendix Figure B.  Median Contribution Rate, CalSTRS Simulations

r = 4%, σ(r) = 5.7% r = 5%, σ(r) = 6.4% r = 6%, σ(r) = 7.1% r = 7%, σ(r) = 10.5%
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Appendix Figure C.  Standard Deviation of Contribution Rate, CalSTRS Simulations

r = 4%, σ(r) = 5.7% r = 5%, σ(r) = 6.4% r = 6%, σ(r) = 7.1% r = 7%, σ(r) = 10.5%
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Appendix Figure D:  Convexity of Contribution Risk and Annual Return, CalSTRS
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