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Abstract

School principals are viewed as critical actors to improve student outcomes, but there

remain important methodological questions about how to measure principals’ effects.

We propose a framework for measuring principals’ contributions to student outcomes

and apply it empirically using data from Tennessee, New York City, and Oregon. As

commonly implemented, value-added models misattribute to principals changes in stu-

dent performance caused by unobserved time-varying factors over which principals exert

minimal control, leading to biased estimates of individual principals’ effectiveness and

an overstatement of the magnitude of principal effects. Based on our framework, which

better accounts for bias from time-varying factors, we find that little of the variation

in student test scores or attendance is explained by persistent effectiveness differences

between principals. Across contexts, the estimated standard deviation of principal

value-added is roughly 0.03 student-level standard deviations in math achievement and

0.01 standard deviations in reading.
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1 Introduction

It is widely believed that principals are integral to school performance. Several waves of

recent policy reforms—including site-based management, external accountability measures,

and teacher evaluation systems—are based on the belief that principals can improve school

climate, instructional practices, and student outcomes. With the increasing availability of

large-scale longitudinal datasets, a growing literature has used value-added (VA) methods

to quantify the impact of effective leadership on student outcomes (e.g., Branch, Hanushek,

and Rivkin 2012; Coelli and Green 2012; Dhuey and Smith 2018). These studies consistently

conclude that principals’ effects are substantial in magnitude. More specifically, they show

that variation in school performance (most often conceptualized as students’ performance on

end-of-year standardized tests) is correlated with who the principal is in a school at a given

time, and they interpret this correlation as evidence that higher-quality principals increase

school performance.

The core logic of principal VA models is straightforward: by statistically adjusting for

factors that affect school performance but that are outside of principals’ control, any re-

maining unexplained variation can be attributed to principal effectiveness. The distribution

formed by individual principal VA estimates then provides an indication of the magnitude of

“principal effects”—conceptualized as the difference between school performance under the

current principal compared to school performance in another plausible setting, such as under

a principal of average effectiveness.1 In practice, however, substantial methodological diffi-

culties exist in credibly identifying the causal effects of school leaders on student outcomes.

While prior studies have raised these issues, questions of whether VA models can produce

useful measures of principal effectiveness or performance remain unresolved. Can we identify

high-performing principals using the outcomes of students and schools? How important is

1. This definition makes explicit that the “importance” of principals is conceptualized as the extent to which
variation in the distribution of principal value-added causes better student outcomes. A different possible
conceptualization of importance is to compare student outcomes under a given principal to a counterfactual
where there was no principal. Our study does not speak to this latter definition of importance.
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variation in principal effectiveness for student learning?

This paper provides new answers to these questions. Specifically, we propose a framework

for understanding the contributions of principals to school performance, which we then apply

empirically to panel datasets from three distinct contexts: Tennessee, New York City, and

Oregon. Collectively, they cover roughly 5 million unique students served by 10,000 unique

principals. Our empirical analysis takes two parts. First, we use a variance decomposition

approach to establish descriptively how much of the variation in school performance—as

measured by student achievement and attendance—is explained by differences between prin-

cipals. This between-principal variation is the basis for typical principal VA models, both in

terms of understanding the magnitude of principals’ contributions to student outcomes and

producing estimates of individual principals’ effects. The second step of our analysis tests

whether the variation attributed to principals by VA models accurately reflects their causal

impact on school performance.

Adapting canonical methods for examining “drift” in teacher VA (Chetty, Friedman, and

Rockoff 2014a; Goldhaber and Hansen 2013), our proposed framework compares the tem-

poral stability in school performance within the same principal to stability across principals

(within the same school). The logic of this comparison is simple: if differences in principal ef-

fectiveness are driving persistent or semi-persistent changes in school performance, we should

observe that cross-year correlations within the same principal are higher than correlations

across principals. Failure to document higher within-principal correlations will lead us to

seek explanations for temporal variation in student outcomes from factors that fall outside

principals’ control. Importantly, our analytic framework allows us to both understand the

validity and reliability of principal VA models (as they are currently implemented) and speak

to larger questions about the importance of variation in principal effectiveness for student

outcomes.

Consistent with prior work, we first demonstrate that between-principal differences in

school performance (as measured by student outcomes) are substantial. In baseline variance
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decomposition models that attribute to principals all persistent or semi-persistent changes

in school performance, a one standard deviation increase in the principal effectiveness dis-

tribution translates to an increase of roughly 0.08 student-level standard deviations (SD)

in math achievement and 0.05 SD in reading. Consistently across all three datasets, how-

ever, we show that cross-year correlations in school performance within and across principals

are very similar, such that only a small fraction—19% in math and 5% in reading—of the

between-principal variance is truly a function of principal effectiveness. Once accounting for

time-varying factors that principals do not control, we estimate the magnitude of principal

effects to be approximately 0.03 SD in math and 0.01 SD in reading.

The core measurement challenge with principal VA is that schools have only a single

principal at a time and the typical principal remains in a school for only a few years. Events

outside of a principal’s control—the entrance of a particularly high-performing cohort of

students, for instance—create semi-persistent ebbs and flows in school performance that

become erroneously attributed to principal effectiveness, which leads to an upward bias

in the estimated magnitude of principal effects. This issue is solved neither by statistical

adjustment nor the Empirical Bayes shrinkage approaches employed in prior studies. While

positive and negative fluctuations would be expected to even out over time, the typical

principal’s short tenure means that their “value-added” is largely a function of the luck of

transient factors they inherit during their tenure. Once we explicitly account for the dynamic

nature of school performance, variance decomposition results show that relatively little of the

variation in student achievement or attendance is explained by persistent differences between

principals. Instead, we find that some of the school-level changes in test scores likely reflect

compositional changes in teachers and students that would have occurred regardless of which

principal was leading the school.

Our primary contribution is to suggest that the true magnitude of principals’ effects on

student test scores is substantially smaller than previously believed based on the existing

literature. A survey of U.S.-based studies that estimate principal VA (all relying on identifi-
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cation from within-school differences across principals) finds an unweighted average of 0.13

SD in math and 0.09 SD in reading (Grissom, Egalite, and Lindsay 2021). However, there

is substantial variability across studies. Using data from Pennsylvania, Chiang, Lipscomb,

and Gill (2016) estimate principal effects of 0.14 SD (math) and 0.11 SD (reading). Dhuey

and Smith (2018) find corresponding estimates of 0.17 SD and 0.12 SD in North Carolina.

In Tennessee, Bartanen (2020) finds 0.20 SD and 0.10 SD. Examining math achievement

only in Texas and Chicago, respectively, Branch, Hanushek, and Rivkin (2012) and Laing

et al. (2016) estimate principal effects between 0.05–0.11 SD and 0.04–0.08 SD.

Existing studies likely overstate the true magnitude of principal effects for two reasons.

First, Bartanen and Husain (2022) demonstrate how limited mobility of principals among

schools leads to variance inflation in models with principal and school fixed effects. The

current paper goes a step further in interrogating the reliability and validity of the identifying

variation in principal VA models. Specifically, we demonstrate how these models erroneously

attribute to principals the effects of time-varying, unobserved school heterogeneity, which

creates upward bias in the estimated variance of principal effects. Our estimates of 0.03

SD in math and 0.01 SD in reading overcome both of these sources of upward bias and,

accordingly, are considerably smaller than prior work.

2 Conceptual Framework For Estimating Principal Value-
Added

The aim of estimating the “value added” of workers in firms emerges from a long tradition

in the labor and personnel economics literatures (Koedel, Mihaly, and Rockoff 2015). In the

context of schools, the goal is to isolate the effect of educators’ inputs on student learning

in a given year; efforts to do so date back to the 1970s (Hanushek 1971; Murnane 1975). To

date, most VA studies have focused on teachers, but there is continued interest in extending

these methods to other school personnel, including principals.
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There is strong conceptual support for the notion that principals are a critical input to

school performance and, ultimately, student outcomes. Principals are the primary managers

of schools whose responsibilities include, for instance, establishing a positive climate, con-

ducting classroom observations and providing feedback to teachers, hiring teachers and other

staff, and managing budgets (Grissom, Egalite, and Lindsay 2021; Grissom and Loeb 2011;

Liebowitz and Porter 2019). There is also a smaller body of large-scale quantitative evidence

using VA methods to link principals to student outcomes (Branch, Hanushek, and Rivkin

2012; Coelli and Green 2012; Dhuey and Smith 2014, 2018; Grissom, Kalogrides, and Loeb

2015; Chiang, Lipscomb, and Gill 2016; Laing et al. 2016; Bartanen 2020; Cullen et al. 2021).

While we discuss the important methodological challenges and potential limitations of these

studies below, we note that they are consistent in their findings that variation in principal

quality is a meaningful driver of differences in student outcomes. The purpose of our study

is to more rigorously evaluate whether VA methods actually measure principal effectiveness.

Researchers generally specify VA models in an ad-hoc fashion and, despite not having a

structural interpretation, view the resulting estimates as potentially informative of educators’

causal effects (Koedel, Mihaly, and Rockoff 2015; Rubin, Stuart, and Zanutto 2004). As

with any VA approach, the key challenge is to avoid attributing to principals factors that

are outside of their control. Particularly for principals, this is a formidable challenge because

(1) a school has only one principal at a time, (2) principals cannot reasonably control many

school-level factors affecting school performance, (3) a priori it is not evident the factors

over which principal exert full, partial, or no control, and (4) the typical principal remains

in a school for fewer than five years.

To make this discussion more concrete, we decompose the performance (Y ) of school s

with principal p in year t as follows:

Yst = δpt(s,t) + µst + νst (1)
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where δ denotes principal effectiveness, µ denotes other school factors over which princi-

pals are theorized to have minimal or no control and should not contribute to estimates of

their effectiveness, and νst is a random error term capturing purely transient factors.2 As

with teacher VA, Y is most often conceptualized as a measure of average student test score

performance in year t, with adjustments for baseline factors such as students’ demographic

characteristics and prior-year test scores.3 The most important conceptual difference be-

tween estimating principal effects and teacher effects is that principals do not provide direct

instruction in classrooms, and thus their impact on student achievement (δ) is largely me-

diated by school-level processes.4 δ may include, for instance, a principal’s efforts to recruit

and retain high-quality teachers, or their ability to establish a positive school climate.

As noted above, a major challenge for estimating principal VA is that there are likely other

school-level factors over which principals have limited or no control. These are captured by

µ in Equation 1. Because a school has only one principal at a time, it is difficult to separate

µ from δ. For example, while effective principals may be able to better identify high-quality

applicants for open positions, they likely face constraints over the hiring pool, which is a

function of uncontrollable factors like geography, local labor market conditions, and the

salary schedule. While these factors may be partially captured by standard observables

in administrative datasets, such as a school’s average student demographics, there likely

remains a substantial portion of µ that is unobserved. The typical approach in prior work

is to account for µ by estimating principal VA via a model with principal and school fixed

effects (e.g., Branch, Hanushek, and Rivkin 2012; Dhuey and Smith 2014, 2018; Grissom,

Kalogrides, and Loeb 2015; Laing et al. 2016; Bartanen 2020). In this model, principal fixed

effects (i.e., their VA estimates) are identified by comparing principals who worked in the

2. For parsimony, we largely refer to µ as factors that principals cannot control, though we acknowledge
that principals likely have partial control over many school-level processes. Thus, a given process (e.g.,
teacher hiring) might operate both through µ and δ.

3. To keep the focus on our conceptual argument, we leave considerations of how to construct Y for the
methods section.

4. There are also some direct channels by which principals can affect test-score performance such as via
directly motivating students or a role-model effect. Our models are unable to parse these direct and indirect
pathways.
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same school in different years. Assuming some principals worked in multiple schools, the

model further allows comparisons to be among principals in “connected networks,” in which

every school has had at least one principal move to at least one other school in the network

(see Bartanen and Husain 2022).

The key identification assumption of the principal and school fixed effects approach is that

there are no time-varying unobserved school factors that principals cannot control. More

explicitly, prior studies assume that µst = µs, such that all persistent or semi-persistent

within-school changes in school performance are attributed to δ. But this is an incredibly

strong assumption—schools are complex organizations with students, teachers, staff, and

parents interacting with one another and with the broader ecosystem (e.g., the neighbor-

hood). Principals also inherit the conditions set by their predecessor(s), such as a large

proportion of the teaching staff. It is likely, then, that µ has both fixed and dynamic com-

ponents. If so, existing approaches to estimate principal effects may not entirely resolve the

challenge of separating the principal’s contribution from uncontrollable school factors.

To introduce additional flexibility into the conceptual model relating principal effective-

ness to changes in school performance, we modify Equation 1 as follows:

Yst = δFp(s,t) + δDpt(s,t) + µFs + µDst + νst (2)

where δ and µ have both fixed (F ) and dynamic (D) components. That is, we allow both

the effectiveness of principals and other school factors to fluctuate over time. Note that

cov(δF , δD) = cov(µF , µD) = 0, by construction, such that these dynamic components, δD

and µD, are defined as deviations from mean school- and principal-performance across years

(δF and µF , respectively).

While Equation 2 adds flexibility, it requires certain assumptions to remain empirically

tractable. Specifically, we follow Chetty, Friedman, and Rockoff (2014a) in specifying that
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both δD and µD fluctuate stochastically over time according to a stationary process:

E[δDpt(s,t)|t] = E[µDst|t] = E[νst|t] = 0,

cov(δDpt(s,t), δ
D
p,t+x) = σδDx , cov(µDst, µ

D
s,t+x) = σµDx ,

cov(νst, νs,t+x) = σνx , for all t

(3)

where x denotes the difference between years for a given t. Here, the stationarity assumption

means that within principal-by-school spells, the stability of school performance between

year t and t+x depends only on x (the number of years separating the school-by-year cells).

This reduces the number of parameters to be estimated and also implies that the dynamic

components (µD and δD) are orthogonal. As we describe further below, the stationarity

assumption allows us to obtain an estimate of the variance of principals’ contributions to

school performance by comparing the cross-year stability of school performance within and

across principals. We also perform various checks to probe the plausibility of this assumption.

In practical terms, µD in Equation 2 makes the model relating principal effectiveness

to school performance more plausible by allowing for semi-persistent fluctuations in school-

level factors that principals cannot control. Two examples of such fluctuations are teacher

composition and the readiness of incoming cohorts of students. If a highly effective teacher

retires for reasons outside the principal’s control (e.g., full eligibility for pension benefits),

school performance will decline, but this is not a one-time “shock” (which would be fully

contained in νst) because their replacement will likely remain in the school for multiple

years. Equally, the performance of a middle school’s “feeder” elementary school may change

over time, leading to variation in the readiness of incoming cohorts of students. Again, this

is not a one-time shock because students remain in the school for multiple years. Unless

this variation is fully captured by observable baseline characteristics (e.g., prior test scores),

differences in cohorts’ unobserved achievement-gain potential will contribute to µD.

The presence of µD creates a problem for isolating a principal’s contribution to school

performance because a school has only one principal at a time. This means that in the typical
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school fixed effects approach, changes in Y conflate µD and δF + δD. In other words, we do

not know whether within-school changes in performance are caused by principals or by time-

varying factors that they cannot control. As a principal’s tenure length increases, positive

and negative fluctuations in school performance caused by µD will even out, in expectation.

The typical principal, however, remains in a school for just a few years, creating the potential

for substantial small sample bias that hinges on the magnitude of µD.

Differences in tenure length across principals provides variation we can leverage to shed

light on the importance of µD. The basic intuition of our approach is to examine the stability

of school performance for sub-samples where the school’s principal in a given year is the same

or different as the principal x years later. The difference in these correlations provides a lower

bound estimate of the magnitude of principals’ contributions to school performance.5 To see

this, we can write these correlations as:

rSamePrin
x =

σ2
µF + σµDx + σ2

δF + σδDx
σ2
Y

, (4)

rDiffPrin
x =

σ2
µF + σµDx + σδFx

σ2
Y

,

where σδFx = cov(δFj(s,t), δ
F
k(s,t+x)) < σ2

δF for j 6= k

We assume that cov(µDx , δ
D
x ) = cov(µDx , δ

F
x ) = cov(µFx , δ

D
x ) = 0, meaning that the dynamic

components of δ and µ are uncorrelated with each other and with the respective fixed com-

ponents.6 We also assume that cov(δDjt(s,t), δ
D
kt(s,t+x)) = 0, meaning that it is not the case that

5. This framework is similar to that used by Branch, Hanushek, and Rivkin (2012)—and extended on by
Laing et al. (2016)—who regress the squared difference in residualized achievement gains between year t and
t∗ on an indicator for whether the principal is different in those two years. This provides an estimate of the
within-school variance in principal quality. Whereas they pool across all available pairs of years and do not
account for the difference in time, we directly incorporate the potential for drift by producing an estimate
for each value of x. We show a direct comparison of their approach and ours in Appendix Table A.4.

6. Conceptually, cov(µDx , δDx ) 6= 0 would indicate systematic sorting of principals to schools on the basis of
temporary fluctuations in principal and school effectiveness, which seems unlikely, particularly given that the
majority of new-to-school principals have no prior principal experience. cov(µDx , δFx ) 6= 0 or cov(µFx , δDx ) 6= 0
are perhaps more plausible, though still unlikely. cov(µDx , δFx ) 6= 0 could arise from compensatory assign-
ment practices if, for instance, districts aim to re-assign effective principals to schools that are struggling
(relative to their typical performance). However, that would require reliable information about principals’
true effectiveness and a concerted reassignment strategy, which seems unlikely given high rates of principal
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certain schools are repeatedly led by principals whose performance is temporarily higher or

lower than their typical performance. However, we allow for the possibility of nonrandom

sorting of principals to schools on the basis of their fixed components. This is represented

by σδFx in rDiffPrin
x , which is the covariance between the effectiveness of principals j and k for

school s. A positive covariance, for instance, will increase the stability of school performance

across different principals. We discuss the implications of this sorting below.

The difference between rSamePrin
x and rDiffPrin

x provides insight about the extent to which

school performance is driven by principals versus school-level factors that principals cannot

control. Following from Equation 4, we can write:

rSamePrin
x − rDiffPrin

x =
σ2
δF + σδDx − σδFx

σ2
Y

(5)

We can then use σ2
Y (rSamePrin

x − rDiffPrin
x ) to calculate σ2

δF + σδDx − σδFx , which is the lower-

bound estimate of the variance of principal effects, where the true variance is σ2
δF + σδDx .

This comparison is similar to a difference-in-differences logic. That is, rDiffPrin
x acts as a

counterfactual: how stable would school performance have been if the school did not keep the

same principal? This allows us to understand how much of the stability indicated by rSamePrin
x

is driven by principal effectiveness as opposed to factors that principals cannot control. If

higher-quality principals cause improved school performance, then σ2
δF + σδDx − σδFx > 0 and

rSamePrin
x > rDiffPrin

x . How this difference varies as a function of x is also informative about the

stability of principal performance (i.e., the magnitude of δFp relative to δDpt). If the dynamic

component of principal effectiveness is small, the difference between rSamePrin
x and rDiffPrin

x

should be similar for all x. If the dynamic component is large, this difference should be

larger when x is smaller because current principal performance is a less reliable predictor of

future performance.

We characterize rSamePrin
x − rDiffPrin

x as a lower-bound estimate because we anticipate that

attrition. cov(µFx , δDx ) 6= 0 would imply that principals sort to high- or low-performing schools on the basis
of fluctuations in their average effectiveness. Again, this could arise if districts are systematically reassigning
temporarily high- or low-performing principals to certain types of schools.
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there is some degree of non-random (positive) sorting, such that σδFx > 0 and rSamePrin
x −

rDiffPrin
x < σ2

δF + σδDx . In other words, this difference in correlations will understate the

magnitude of principal effects if certain schools are systematically more likely to be led

by higher-quality principals.7 Based on Equation 4 and assuming (conservatively) sorting

patterns are static, we can write this bias as:

σδFx = ρδσ
2
δF (6)

to see that σδFx is increasing in the school-level intraclass correlation of principal quality

(ρδ) and the variance of the stable component principal effects (σ2
δF ).

8 Equation 6 helps

to establish that rSamePrin
x − rDiffPrin

x is likely a useful lower-bound estimate of magnitude of

principal effects because any bias scales with σ2
δF , which we further demonstrate in Section

5.4.1.9

With this framework established, we turn now to our empirical work.

3 Data, Sample, and Measures

This study analyzes longitudinal administrative data from two mid-sized states and the

largest school district in the United States. All three data sets contain detailed information

about all employees in the K–12 public school system, including job title, school placement,

7. Note that the converse also holds; rSamePrin
x − rDiffPrin

x becomes an upper-bound estimate if σδFx < 0,
meaning that schools are more likely to replace a high-quality leader with a low-quality leader (and vice-
versa). Such a scenario could arise if school districts assign principals in a compensatory equalizing fashion.
We do not expect that this is a common practice.

8. Specifically, this assumption means that σδFx = σδF , meaning that the correlation of δF across principals
does not vary by x, which is the number of years between when they enter the school. This is likely a
conservative assumption in terms of the magnitude of sorting bias. If σδFx deteriorates with x, we will
overstate the magnitude of sorting bias.

9. In fact, we show in Appendix Figure C.1 that except under fairly extreme sorting scenarios, a value of
rSamePrin
x − rDiffPrin

x that is small in magnitude cannot correspond to a large true magnitude of δ. As one
example, if ρδ = 0.5 (i.e., 50% of the variance in δF is within schools), the true magnitude of principal effects
is 0.1 SD (i.e., a 1 SD increase in principal quality raises student test scores by 0.1 SD), and 75% of the
principal effect is fixed, the estimated SD using rSamePrin

x − rDiffPrin
x is 0.079, or a downward bias of 0.021

SD.
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and demographic information. We connect these staff data to student files which include

demographic and enrollment information, as well as achievement scores on statewide end-

of-year exams. We provide brief information in the main text on our samples and outcome

measures, and refer readers to Appendix B for further details on the data from each context.

3.1 Sample

The Tennessee data, provided by the Tennessee Department of Education via the Tennessee

Education Research Alliance at Vanderbilt University, cover the 2006–07 through the 2018–

19 school years, and (in their most comprehensive sample) represent 4,095 unique principals,

19,867 school-by-year cells, and 10.0 million student-year observations. The New York City

(NYC) data from the New York City Department of Education cover the 1998–99 through

the 2016–17 school years, and represent up to 3,201 unique principals, 18,240 school-by-

year cells, and 6.2 million student-year observations. The Oregon data, provided by the

Oregon Department of Education, cover the 2006–07 through the 2018–19 school years, and

represent up to 2,757 unique principals, 12,449 school-by-year cells, and 5.4 million student-

year observations. Thus, across all contexts, our sample represents roughly 10,000 principals,

5 million unique students, and 22 million student-year observations. As we discuss below,

one important limitation of the NYC data is that we cannot access an underlying student

enrollment or attendance file, which means we cannot conduct certain analyses that we show

for TN and OR. We report the characteristics of the students and principals in our samples

in Appendix Tables B.1–B.3.

3.2 Outcomes

The primary measures we study are school-by-year level means of students’ contemporaneous

test-score results in math and reading. These test scores are available in grades 3–8 for all
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contexts, but we also examine high school students’ exams in TN and OR.10 We also examine

their daily attendance rates in auxiliary models. Within each dataset, these student outcomes

are standardized at the grade-by-year level to have a mean of zero and standard deviation of

one, and we report estimates of the magnitude of principal effects in student-level standard

deviation units.11 We describe the specific construction of school performance measures

below.

4 Analytic Approach

Our general approach takes two steps. First, we use variance decomposition to descriptively

examine how much of the variation in student outcomes is explained by differences between

schools, differences between principals within schools, and differences within principals over

time. This first step is important, as obtaining credible measures of principal effectiveness

assumes that there exists a distribution of principal quality (with respect to raising student

test scores) with nonzero variance. Once we establish the magnitude of these variance com-

ponents, we then evaluate the credibility of empirical estimates of the principal-level variance

component as measures of principal quality, effectiveness, or performance.

10. In Tennessee, end-of-course exams are required for various math and reading courses, including Algebra
I and II, and English I, II, and III. Through the 2013–14 school year, Oregon required high-school students to
sit for the Oregon Assessment of Knowledge and Skills (OAKS) in math and English Language Arts at some
point in high school; students across grades 9–12 sat for the test. The state shifted to the Smarter Balanced
Assessment Consortium (SBAC) test in 2014–15 at which point all 11th-graders were required to sit for the
test. Thus, students are typically tested one time in high school. See the data appendix (Appendix B) for
further information about HS exams.
11. To account for the different grades at which high-school students take these tests, we standardize their

scores across grade levels, within the high-school grade band.
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4.1 Variance Decomposition

To conduct our variance decomposition, we first obtain student-level test score residuals by

regressing student test scores on a vector of observable characteristics:

Yist = βXist + γs,p + εist

Y ∗
ist = Yist − β̂Xist

(7)

We estimate β using within principal-by-school spell variation by including a principal-by-

school fixed effect (γs,p), which avoids overstating the impact of observables on student test

scores due to a potential correlation between Xist and school or principal quality. We then

compute Ȳ ∗
st, the school-by-year mean of test score residuals (Y ∗

ist), which is our measure of

school performance. We exclude school-by-year cells where fewer than 25 students contribute

to Ȳ ∗
st.12 Finally, we estimate a random effects model to partition the variance in school

performance into differences between schools, differences between principals nested within

schools, and differences between school years nested within principals:

Ȳ ∗
spt = θs + θs,p + εspt (8)

where θs is a school random effect, θs,p is a principal-by-school random effect, and εspt is an

i.i.d. error term that parses out purely transient factors of yearly school performance, such

as test-score measurement error or a fire alarm on the day of the exam. The parameters of

interest are their estimated variances. In particular, we are interested in the variance of θs,p,

which is the magnitude of the variation attributed to principals.13 Equation 8 follows the

12. As noted in the data description (Appendix B), this drops only a few thousand students, largely in
schools that do not cover tested grades (e.g., K–2 schools) but where a handful of students had recorded test
scores.
13. Note that while some principals work in multiple schools, we are not leveraging this potential source

of variation in our primary models because we treat principals as perfectly nested within schools. While
estimating Equation 8 using a cross-classified model (i.e., with θp instead of θs,p) could help to disentangle
principal-to-school sorting that could lead to inflation of the magnitude of θs, it requires fairly strong as-
sumptions about the nature of principal-school complementarities to justify the transitivity of a principal’s
impact in different schools (Bartanen and Husain 2022). Additionally, there are relatively few principals
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logic of prior principal VA studies that attribute persistent or semi-persistent differences in

within-school performance to principals.

A crucial decision in this approach concerns the appropriate elements of Xist, which

are determinants of (or proxies for) student test scores that should not be attributed to

school performance. In the teacher value-added literature, Xist typically includes prior-year

test scores and absences, student demographic and academic characteristics (e.g., gender,

race/ethnicity, economic disadvantage, special education status, limited English proficiency),

class- and school-by-year means of the individual student characteristics, and fixed effects

for grade and year. In particular, including prior-year outcomes is important to control

for dynamic sorting of students to classrooms and teachers, and including classroom-level

controls is important to account for peer effects (Rothstein 2010; Chetty, Friedman, and

Rockoff 2014a). These are particularly salient given empirical evidence on the phenomenon

of parental requests for their children to be assigned to particular teachers (e.g., Jacob and

Lefgren 2007). For school or principal value-added, there is no consensus on the appropriate

set of controls.

Given the lack of consensus about the appropriate controls and the considerations we

outline in the next paragraph, we examine five specifications in our preliminary step of

residualizing student test scores, prior to using these residualized values to decompose the

remaining observed variance. Model 0 includes no controls. Model 1 includes observable

student characteristics, school-by-year averages of these characteristics, and fixed effects for

grade and year.14 Model 2 adds cubic polynomials for students’ prior-year test scores in

math and reading, as well as a cubic for their prior-year attendance rate. Model 3 repeats

this specification but restricts the sample to students who are in their first year in the school.

whom we observe in multiple schools. Since our primary aim is to understand the nature of within-school
comparisons of principals, we opt for the nested model. However, we show as extensions of our main results
estimates that examine the stability of estimated principal effects across schools in Appendix G.
14. In Tennessee and New York City, these student characteristics include gender, race/ethnicity, family

income (as measured by eligibility for free- or reduced-price lunch), special education status, and English
learner status. Oregon additionally includes 504 plan designation and participation in migrant or Indian
education programs.
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Model 4 replaces prior-year outcomes with prior-school outcomes, which is defined as the

most recent prior-year outcome where the student was in a different school.15

Each of these models has differing strengths and limitations that encompass both concep-

tual and practical considerations. We examine Model 0 mainly for the sake of comparison

to demonstrate the relative importance of controlling for the elements in Xist. Model 1

accounts for school-level sorting on the basis of observable student and family characteris-

tics. By omitting prior test scores, Model 1 avoids the problem of controlling away part of

a school’s repeated effect on student performance, but it will potentially under-control for

sorting. As long as any student-to-school sorting on unobservables is fixed over time, how-

ever, the bias will be limited to the school-level variance component. Similarly, principal VA

models that include school fixed effects will control for any time-invariant student-to-school

sorting (whether based on observables or unobservables).

By including prior-year outcomes, Model 2 is the most aggressive approach in terms of

accounting for the myriad potential factors that affect student outcomes in year t but that

should not be attributed to school or principal performance. Effectively, prior-year outcomes

are intended to serve both as a sufficient statistic for each student’s history of inputs (in-

or out-of-school) up to year t − 1 and a proxy for unobserved student characteristics, such

as motivation. The disadvantage of Model 2, however, is that it will control away part of a

school’s causal impact on student performance. This adjustment will lead to a downward bias

in the principal- and school-variance components and will punish high-performing schools

(or reward low-performing schools). Nevertheless, the substantive importance of this bias is

not immediately clear and may be outweighed by the benefit of more aggressively adjusting

for sorting. Among these approaches, Model 2 is most closely aligned with teacher VA and

is also the most common approach in the principal VA literature.

The final two models aim to find middle ground. By controlling for prior-year outcomes

15. We do not estimate Models 3 and 4 for NYC because, while we can observe students in schools where
they take their math and reading tests, we do not have the requisite enrollment information that allow us
to observe when students first enter a school or when students move in and out of schools.
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but only including new-to-school students, Model 3 avoids the repeated effects issue. The

obvious cost of this approach is that it greatly reduces the sample size, which may lower

the reliability of VA estimates and may introduce external validity concerns if school or

principal quality matters differentially for new-to-school students. Model 4 replaces prior-

year outcomes with each student’s most recent prior outcome that was in a different school.

This is conceptually similar to Model 3 but has the benefit of a larger sample size, though

it still fails to include most elementary school students.

4.2 Validity and Reliability Analyses

After establishing variance components for school performance, we then investigate the ex-

tent to which the within-school variation attributed to principals (θs,p) is a valid and reliable

measure of principal effectiveness. Put more simply, do within-school changes over time (net

of purely transient fluctuations) in mean student test score residuals reflect the causal effect

of principals or of factors outside their control?

Following the framework of Equation 4, we estimate the correlations among pairs of

school-by-year mean test score residuals (Ȳ ∗
spt) constructed from Equation 7, precision weight-

ing by the total number of students in each pair of school-by-year cells. We use all available

school-by-year cells with a time span of x years between them. These autocorrelations,

rx, represent the reliability (also described as “stability”) of mean school-by-year test scores

for predicting school performance x years later (Chetty, Friedman, and Rockoff 2014a). In

the context of teachers, prior work finds that the correlations decay as x increases up to

roughly seven years, but are stable afterwards, implying that teacher quality has permanent,

dynamic, and transitory components (Goldhaber and Hansen 2013; Chetty, Friedman, and

Rockoff 2014a). We estimate rSamePrin
x and rDiffPrin

x , which are correlations across school-

by-year mean test score residuals where the principal in year t is the same or different as

year t + x. Their difference indicates whether principals contribute to changes in school

performance.
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5 Results

We begin by establishing variance components for school performance across contexts and

approaches to residualization, which illustrates the basis for prior claims that principals

matter for student outcomes. We then move to the heart of our analysis, which evaluates

whether these descriptive quantities accurately reflect principals’ causal effects as opposed

to factors outside of their control.

5.1 Variance Decomposition

In Table 1, we decompose the total variance in school-by-year mean achievement into three

components: between-school, between-principal (nested within school), and within-principal

(across years). We show these decompositions across our five models for residualizing student

test scores and across our three datasets. For each level (school, principal, residual), we

report the estimated standard deviation of the random effect, with the variance component

(%) shown below. For parsimony, we focus on the results for math scores, with results for

reading (which are very similar) shown in Appendix Table A.1.

These results demonstrate that roughly 10 to 20 percent of the observed variation in

school math performance is attributed to principals, with some variation across contexts

and residualization specifications. It is notable, however, that the residual variance compo-

nent is substantial across all models—in each case it is larger than the principal variance

component. In Model 2, which aims to measure student achievement growth by including

adjustments for prior-year test scores, the residual is greater than both the school and prin-

cipal variance components, demonstrating that school effectiveness (as measured by student

test score improvement) varies quite substantially across years, even within the same school

and principal.

We can understand the potential strengths and weaknesses of different approaches for

residualizing student test scores by contrasting the results across model specifications. Com-
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paring Model 0 (no controls) and Model 1 (controls for student demographics), we observe

a reduction in the magnitude of each of the variance components, but by far the largest

change is for the school component. By contrast, the change in the principal variance com-

ponent is substantially smaller (NYC) or roughly zero (TN and OR). This shows that student

sorting—as measured by student demographic characteristics—is largely between schools, as

opposed to students or families responding to principal changes within schools.

Consistent with our expectations, we find that controlling for prior-year test scores in

Model 2 further reduces the magnitude of the school and principal effects. As previously

discussed, part of this reduction is due to mechanically controlling for the school or for

the principal’s own quality for students who remain in the same school across years. The

reduction may also, however, encompass further elimination of non-random student sorting

that was not captured by student demographics. For instance, a middle school’s “feeder”

elementary school might be particularly effective, which increases the readiness of incoming

student cohorts. This increased readiness may be orthogonal to student demographics and

will lead to higher test score performance in the middle school, but should not be credited

to the middle school or its principal. Whether the benefit of controlling for prior test scores

outweighs the cost is unclear.

To try to disentangle this issue, we can repeat this prior-year test score specification for

a sample of students who are in their first year in the school (Model 3), or instead control

for students’ most recent prior-year score that was in a different school (Model 4). We find

similar results for both of these models. As expected, the school and principal effects increase

in magnitude relative to Model 2, though only modestly. In particular, the school random

effect remains substantially smaller in magnitude than in Model 1, suggesting that prior

test scores are capturing additional between-school-sorting that is not fully accounted for

by student demographics. Additionally, the fact that the principal effect remains smaller in

Models 3 and 4 than Model 1 suggests that there is also time-varying heterogeneity within

schools over time that is not completely captured by controlling for student demographics.
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This is important to establish because it means that not controlling for prior-year test scores

(Model 1) will likely over-attribute changes in test score performance to principals and

schools, while controlling for prior-year test scores will tend to understate their effects.

The results for Models 3 and 4 also illustrate the practical costs of these alternative

approaches. Whereas we can estimate Models 0–2 on a full and stable sample, we apply

Models 3 and 4 to restricted samples. In some cases, Models 3 or 4 are simply intractable

due to data limitations (e.g., not observing the full history of student enrollment in NYC) or

the fact that very few students in early grades will have test scores from a prior school. We

present analogous results for reading (Appendix Table A.1) and (in Tennessee and Oregon)

for attendance (Appendix Tables A.2 and A.3). The results are substantively identical, with

smaller estimated variances attributed to schools and principals for reading than math.

To summarize, Table 1 establishes two important points. First, regardless of the spec-

ification, the non-zero magnitude of the principal random effects demonstrates that there

exists within-school variation in school performance that is correlated with principal assign-

ment. This is the source of variation that existing studies leverage to estimate principal

value-added, but it is still unclear whether this variation reflects the causal effects of princi-

pals on student outcomes. Second, even in models that leverage hundreds of student-by-year

observations to estimate each school or principal effect, there remains substantial residual

variation in school performance across years. In some of the models that adjust for prior

test scores, the magnitude of year-to-year fluctuations in school performance outweighs the

stable components of schools and principals.

5.2 Validity and Reliability

These findings motivate the next part of our analysis, which seeks to understand the extent

to which within-school variation in school performance across principals is a valid and reli-

able measure of principal performance. As a first step, we follow prior canonical studies of

teacher value-added (Goldhaber and Hansen 2013; Chetty, Friedman, and Rockoff 2014a) in
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computing the correlation between yearly mean test score residuals (Ȳ ∗
spt) within schools. For

teachers, these autocorrelations (between teacher-by-year rather than school-by-year cells)

indicate both the stable and dynamic nature of teacher VA. Chetty, Friedman, and Rockoff

(2014a) and Goldhaber and Hansen (2013) both find adjacent-year correlations well below

1, which suggests a large role of estimation or measurement error in teacher VA, but may

also reflect instability in true performance. They also find declining correlations between

mean residuals that are further apart in time, suggesting that teacher effectiveness has a

substantial dynamic component that “drifts” over time. We conduct the same exercise for

schools, but also examine whether the patterns differ for mean residuals within the same

principal versus those across principals (within the same school).

Figure 1 shows these within-school autocorrelations across each of the four residualization

models, weighting by the total number of students used to form the mean residual in each

cell. We show results for math and reading in each context. We uncover several important

patterns. First, while the magnitude of the correlations differs across models (reflecting the

magnitude of the school-level variance component relative to the residual), they all follow

the same pattern of declining correlations as the time span between outcomes grows larger.

Particularly in Models 2–4, which control for students’ prior test scores, school performance

in prior years quickly becomes only weakly predictive of current performance. A modest

positive correlation remains, however, even when comparing performance with a 10-year

gap.

The autocorrelation vectors in Figure 1 demonstrate that school performance has a sub-

stantial dynamic component. This is perhaps conceptually intuitive, as the school factors

that matter most for student achievement are not fixed over time. In particular, the school’s

personnel—teachers, administrators, and other staff—are changing, as are external factors

like neighborhoods and district policy. The key question for our analysis is to what extent

these changes in school performance over time are driven by principals or by other factors

over which principals exert little control? To shed light on this, we compare the correlations
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between year t and year t+ x on subsamples of years where the principal in year t is either

the same or different as year t+ x.

We find only small differences in school performance autocorrelations comparing within-

principal spells, as compared to across principals. For each value of x up to 10 years, we plot

these correlations in Figure 2 and provide more detailed information in Tables 2 (math) and

3 (reading), including sample sizes, rSamePrin− rDiffPrin, p-values for the null hypothesis of no

difference, and the implied standard deviation of principal effects based on σ2
Y (rSamePrin −

rDiffPrin). For parsimony, we focus on the correlations from Model 2 (residualizations that

include prior-year test scores), with results for other models shown in Appendix Figures

A.1–A.3.16 While the correlations within the same principal tend to be slightly larger in

magnitude, the pattern of decreasing correlations in school performance across time is largely

not explained by principal transitions.

Based only on the year immediately after a principal transition (rSamePrin
1 − rDiffPrin

1 ), the

estimated SD of principal VA in math is 0.035, 0.030, and 0.041 in Tennessee, NYC, and

Oregon, respectively. While statistically significant, these estimates are substantially smaller

than both those reported in nearly all prior studies and based on the variance decomposition

in Table 1.17 The bottom row of each panel also shows pooled SD estimates based on a

weighted average of rSamePrin
x − rDiffPrin

x across x, which are similar to the x = 1 estimates.

For reading, rSamePrin
x − rDiffPrin

x is close to zero for any x across all three contexts; our

pooled estimates of the SD principal effects are 0.016, 0.000, and 0.018 SD, respectively.18

16. We show corresponding autocorrelations vectors for attendance in Tennessee and Oregon in Appendix
Figures A.4 and A.5, respectively.
17. Perhaps most notably, these SD estimates are roughly 40–60 percent smaller than the lower-bound

estimates from Branch, Hanushek, and Rivkin (2012). We provide a replication of the Branch, Hanushek,
and Rivkin (2012) results using our datasets in Appendix Table A.4. Specifically, we construct the squared
difference in mean residuals (from the Model 2 approach) between each possible pair of school-by-year cells.
We then regress these squared differences on an indicator for whether the principal is different between these
two cells. We obtain results comparable to theirs, but also show how the presence of drift yields an inflated
estimate of the magnitude of principal effects. In particular, we add non-parametric controls for the time
gap between pairs of school-by-year mean residuals. Because of drift, these indicators are positive and large
in magnitude. They are also highly correlated with the different principal indicator and, by consequence,
controlling for them greatly attenuates the coefficient on different principal.
18. Our results also diverge sharply from Bartanen (2020), who applies a similar model using Tennessee

data and finds large differences across principals for both test scores and attendance. While Bartanen
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In general, our SD estimates are relatively stable for x < 5, which is where we also have

greater precision. At higher x, we see differing patterns by context. In NYC, for instance,

rSamePrin
x − rDiffPrin

x is essentially zero beyond 5 years, while in OR it becomes larger as x

increases. Beyond decreased sample size, sample selection is an important consideration in

interpreting rSamePrin
x −rDiffPrin

x at higher lags, as the rSamePrin
x sample reflects a small minority

of principals (particularly in OR) who remain in their school for more than five years.19

The results in Figure 2 suggest that the dynamic component of school performance is

largely not driven by principal transitions. Instead, there exists within-school variation

in student achievement performance that is semi-persistent and, thus, becomes erroneously

attributed to principals. Comparing our variance estimates based on rSamePrin
x −rDiffPrin

x to the

baseline estimates from Table 1, only a small fraction—19% in math and 5% in reading—of

the within-school variation in mean student test score performance used to produce principal

VA estimates is explained by persistent effectiveness differences between principals. The

remainder is likely the result of school factors that principals do not control.

As a useful point of comparison, we show estimates of rSamePrin
x and rDiffPrin

x using perception-

based measures of principal performance. In NYC and TN, we can examine for a subset of

years rubric-based ratings from their supervisors and low-stakes survey-based ratings from

their teachers.20 We do not argue that these rating scores are intended to measure the same

construct as student test score performance or even that they are better measures of principal

performance, but they are informative with respect to illustrating the decomposition logic

of the correlation analyses. Figure 3 shows within-school autocorrelations of these measures,

(2020) incorporates the potential for drift in estimating principal VA, his residualization models include both
principal and school fixed effects. Low mobility of principals and schools introduces substantial estimation
error into the school and principal fixed effects (Bartanen and Husain 2022), which results in an overstatement
of both the magnitude and inter-temporal stability of principal VA. We circumvent that issue here by only
including a principal-by-school FE in the residualization step.
19. Section 5.4.3 presents suggestive evidence that the OR results at higher lags are driven by selection

rather than principal effects. Using a matched sample approach that aims to address the selection issue, our
pooled estimate of principal effects in OR decreases from 0.048 to 0.027 SD in math and 0.018 to 0.013 SD
in reading.
20. In TN, each of these measures becomes available starting in the 2011–12 school year, meaning that we

can examine gaps of up to seven years. In NYC, only four years of survey data are available, such that the
maximum gap is three years.
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again comparing within the same principal versus across principals. Here, we observe clear

separation in the correlations within versus across principals: correlations within the same

principal are substantially larger than correlations across principals. This demonstrates that

there are substantial differences in the perceptions of principal performance, which may also

reflect an important dimension not captured by student-outcome-based measures.

An additional way to demonstrate our key result is to implement a quasi-falsification

test that estimates the “effects” of principals based on the observed history of principal

switches for a different school. In essence, we simply reassign to each school the principal

assignments from a different, randomly selected school. We then run our test-score variance

decomposition models using these simulated principal assignments. Appendix Table A.5

shows these results for math across 100 iterations in each dataset, compared with the baseline

estimates from Table 1 (Appendix Table A.6 shows the corresponding results in reading).

Consistent with the small differences between rSamePrin
x and rDiffPrin

x , we find that the principal

variance component estimates from the actual data are only slightly larger than those from

the imputed data (between 0.001 and 0.019 SD units, depending on the context, subject

and model). This result further reinforces that the observed between-principal variation in

school performance is mostly capturing the effects of other school-level factors rather than

the effect of the current principal.21

5.3 Event Studies

The results from Section 5.2 suggest that most of the variation used to form principal VA

estimates reflects time-varying factors that would have occurred regardless of which principal

was leading the school. As a further illustration of this finding, we shift to an event study

framework that examines changes in school performance following the entry or exit of a

high-estimated-VA (or low-estimated-VA) principal. This framework is conceptually similar

21. As further illustration, we show in Appendix G that once we explicitly model the autocorrelation of
the error term in Equation 8, the principal-level variance components are effectively zero (Appendix Tables
G.1 and G.2).

24



to Chetty, Friedman, and Rockoff (2014a), who examine changes in grade-level performance

following the entry or exit of high- and low-VA teachers. Here, however, the logic is flipped;

we do not expect to see a substantial change in school performance following the entry or exit

of a high-estimated-VA principal insofar as principal VA mostly reflects factors unrelated to

true principal effectiveness.

To implement this analysis, we first estimate principal VA in a model with principal-by-

school and school fixed effects:

Yispt = βXist + γs + δs,p + εispt (9)

where the control vector Xist includes prior-year test scores and the full set of student and

school characteristics (i.e., residualization model 2). We place a sum-to-zero constraint on

the principal-by-school fixed effects δs,p within each school, such that δ̂s,p represents principal

p’s estimated performance in school s relative to the mean performance of all principals who

ever led school s (Bartanen and Husain 2022). For the purposes of our event study, however,

we cannot use this measure to identify high- and low-VA principals because the same student

test score residuals contribute to both the school performance measure and the VA estimate,

which will create a mechanical correlation (Chetty, Friedman, and Rockoff 2014a). Instead,

we construct a leave-school-out VA measure δ̂−ss,p using a precision-weighted average of δ̂s,p

from prior and future schools that principal p leads.22 We define high- and low-estimated-

22. This differs from Chetty, Friedman, and Rockoff (2014a) in that our jackknife measure leaves out all
residuals from the principal’s current school, including those that are outside of the event window. This is
important because of the autocorrelation of the residuals. For instance, if year t is within the event window
for examining changes in school performance and year t + 1 is not, using year t + 1 to form the principal’s
VA estimate will still create a mechanical correlation because many of the school-level factors (including
those that principals do not control) in year t are also present in year t + 1, and most of the students who
contribute to year t performance also contribute to year t+1 performance (since most students will remain in
the same school unless making a structural move). Notably, Cullen et al. (2021) propose a validation test of
principal VA that is similar to ours, except that their principal VA estimates include residuals from the same
school but outside of the event window (and not residuals from principals’ tenures in other schools). They
find that changes in principal VA positively predict (albeit weakly) changes in school performance, which
they interpret as “evidence to suggest that our spell value-added estimates capture meaningful differences in
principal effectiveness” (p.17). Our analysis instead suggests that this positive relationship is driven by the
autocorrelation issues described above.
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VA principals as the top and bottom quartiles using this leave-school-out measure. We then

identify all events where a high- or low-estimated-VA principal enters or leaves a school,

subject to the constraint that this principal leads the school for at least three years. For

each event, we construct a six-year panel defined by event time −3 to 2, where 0 denotes the

first year of the incoming principal. With this sample, we regress Ȳ ∗
spt on a set of indicator

variables for event time:

Ȳ ∗
spt =

2∑
k=−3

βkτk + ϕt + εspt (10)

τk are event time indicators, which are set to 1 if year t is k years from a principal transition

and ϕt are year fixed effects. Standard errors are clustered by school-spell to allow for the

correlation of errors over time within each unique event.

Figure 4 demonstrates that there is no clear change in student test score performance

following the arrival or departure of a high- or low-estimated-VA principal, on average.

We plot the predicted margins from Equation 10 along with “first stage” results where the

dependent variable is the leave-school-out VA estimate for the principal leading the school

in time k.23 Because NYC has relatively few principals who led multiple schools, event

study results are less precise and, thus, we focus on the results from TN and OR.24 To the

extent that estimated principal VA reflects real differences in principals’ causal effects on test

scores, we should expect the change in VA to correspond to a change in student achievement.

Despite a large change in estimated principal VA following each type of transition (based on

the difference between the pooled pre- and post-years), nearly all of the estimated changes

in student test scores are modest in magnitude and not statistically significant.

23. Note that to maximize our sample, we do not restrict to events where both the departing and incoming
principal have a non-missing leave-school-out VA estimate (only the principal used to define the high- or
low-VA entry/exit). As such, these “first stage” results include events where one side of the transition is
dropped due to missing data. Restricting to events that have VA estimates for both principals yields very
similar results, but they are less precise.
24. Results from NYC are shown in Appendix Figures A.6 and A.7. While less precise, these results are

very similar to those from TN and OR. However, we cannot present the “first stage” results using value-added
as the outcome because there are insufficient events where we can estimate a leave-school-out principal VA
measure for both the departing and entering principal.
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For example, the top left panel of Figure 4 shows results for the entry of a high-estimated-

VA principal in Tennessee. This transition corresponds to, on average, a 0.15 SD increase

in principal VA (p < 0.001) but a -0.005 SD increase in student test scores (p = 0.92). The

one exception to this pattern of null results is the entry of a high-estimated-VA principal in

Oregon. Here, we observe a 0.12 SD increase in principal VA and a 0.036 SD increase in math

scores (p = 0.02). For reading achievement, we find null results across both contexts (see

Figure 5). Standard errors for the simple pre-post difference in test scores range from 0.013

to 0.019, indicating that we cannot rule out modestly sized effects, including those of the

magnitude from Table 2. On the whole, however, these results support the conclusion based

on rSamePrin
x − rDiffPrin

x that the true magnitude of principal effects is substantially smaller

than previously reported and that most of the information contained in principal VA does

not reflect persistent differences in principal quality.

5.4 Checking Threats to Validity

Fundamentally, our proposed framework rests on the idea that principal effects exhibit some

persistence—either fixed or evolving through time. Empirically, we rely on our sample data to

estimate rSamePrin
x − rDiffPrin

x , from which we can obtain the estimated magnitude of principal

effects in terms of improved student outcomes. Under this framework, there are several

potential threats to validity, including sorting bias, violation of the stationarity assumption,

and sample selection bias. Below, we outline each of these threats and present evidence to

demonstrate they are not likely to be major drivers of our results.

5.4.1 Sorting Bias

As described by Equation 6, the potential for non-random sorting of principals to schools

means that the magnitude of principal effects based on rSamePrin
x − rDiffPrin

x is a lower-bound

estimate. Intuitively, if schools hire principals of similar quality, the stability of school
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performance across principals (rDiffPrin
x ) will be greater, reducing the estimated magnitude

of principal effects. Following Equation 6, we can conduct a bounding exercise based on

assumptions about ρδ (the school-level intraclass correlation of principal quality).

As a first step, we obtain plausible values for ρδ by estimating its analog for observable

principal characteristics, including years of principal experience (at the time of hire), years

of assistant principal experience, advanced degree attainment, ratings from teachers and su-

pervisors, and the principal’s own value-added when they were a classroom teacher.25 While

there is no guarantee that any of these measures is highly correlated with principal value-

added, they are characteristics available to school district administrators when determining

principal hiring and placement. Appendix Table C.1 shows that, across nearly all of these

measures, the estimate of ρδ is modest, ranging from 0 to 0.2.26 Further, most newly hired

principals have no prior principal experience, which may limit sorting insofar as principal

quality is difficult to predict prior to observing someone in the role.

Appendix Table C.2 shows bias-corrected estimates of the magnitude of principal effects

under different sorting scenarios. We average the pooled SD from Tables 2 and 3 across each

of the three contexts. These estimates are 0.034 and 0.011 SD for math and reading VA,

respectively. Applying Equation 6, we compute the bias-corrected estimate based on ρδ.27

25. Note that we do not have all of these measures in each context, either because they are unavailable
or the sample size is too small. For example, we can estimate teacher value-added in Oregon only for the
last six years of our panel, which means that very few (roughly 100) principals in our sample have teacher
value-added estimates and, further, we do not observe in the same school multiple principals with teacher
VA estimates, meaning that we cannot estimate the ICC for this measure.
26. For supervisor ratings in TN and teacher ratings in NYC, ρδ is roughly 0.3. However, part of the

correlation in these perception measures likely reflects overlap in raters (i.e., many of the same supervisors
or teachers are judging different principals within the same school, such that any rater-level variance will be
incorporated into ρδ) and school-level factors that are incorrectly attributed by raters into principals’ scores.
Accordingly, we construct “leave-current-school-out” measures that average over a principal’s scores when
they led a different school, which should help to remove upward bias from overlap in raters (though only
partially for supervisor ratings, because principals typically move within the same district and may have the
same supervisor as their prior position). The ICC is attenuated, as expected, putting them more in line with
results from the non-ratings measures.
27. Because we do not separately estimate σ2

δF and σδDx (the stable vs. dynamic components of principal

quality), we need to make an additional assumption about their relative importance (
σ2
δF

σ2
δF

+σδDx
) to solve for

the magnitude of bias. Here, we assume this ratio is 1 (principal quality is perfectly stable), which will yield
a larger magnitude of bias. However, our results are not particularly sensitive to this choice. See Appendix
Table C.2 for details.
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Under moderate sorting (ρδ = 0.2), our revised estimates are 0.038 and 0.012 SD. Even with

substantial sorting (ρδ = 0.6), bias-corrected estimates are only slightly larger at 0.054 and

0.017 SD. Based on this exercise, we believe that our lower-bound estimates are likely to be

close to the true magnitude of principal effects.

5.4.2 Stationarity Assumption

An additional potential threat to the validity of rSamePrin
x − rDiffPrin

x as a indication of the

magnitude of principal effects is that the stability of a principal’s performance—or, equally,

uncontrollable school factors—varies as a function of how long the principal has been leading

the school. A common suggestion in the principal VA literature, for example, is that some

of a principal’s effect is lagged, such that school performance under a new principal is more

reflective of the conditions established by her predecessor(s) than of her own performance. As

she remains in the school, however, her influence over school performance increases. Under

this scenario, the stationarity assumption would be violated and rSamePrin
x − rDiffPrin

x would

likely understate the magnitude of principal effects for small values of x. Specifically, the

partial persistence of the prior principal’s effect would decrease rSamePrin
x and increase rDiffPrin

x .

We examine this empirically by comparing rSamePrin
x and rDiffPrin

x for principals of varying

tenure levels. If the prior principal’s effect persists into the new principal’s tenure, rSamePrin
x

should be smaller for principals in their first few years in the school, relative to more es-

tablished principals. By similar logic, rDiffPrin
x should be larger when the principal in year t

(i.e., the departing principal) has a longer tenure. We show these results for each context

in Appendix Figures D.1–D.3.28 We do find some evidence that year-to-year correlations

are slightly greater among the longest-tenured principals in Oregon (math and reading) and

New York City (math only). The sample sizes for these cells, however, are also quite small,

particularly in Oregon where very few principals stay in the same school for more than five

years (see Appendix Tables D.1–D.3). In New York City, the larger correlations are only

28. Note that these figures only report estimates for cells where we observe at least 50 principals. The
sample size for each context is shown in Appendix Tables D.1–D.3.
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observed for principals with 16 or more years of tenure (and not for 11–15 years), which is

a small and potentially idiosyncratic group. In Tennessee, there is little difference across

tenure groups and, if anything, the correlations are smaller among highly tenured principals.

Overall, these results suggest that the limited variation in measured effects of principals is

not merely a function of a preponderance of new-to-school principals whose potential impacts

are smaller than longer-tenured principals.

5.4.3 Selection Bias

The logic of using rSamePrin
x −rDiffPrin

x to infer the magnitude of principal effects is that rDiffPrin
x

serves as a counterfactual: how stable would school performance have been between year t

and year t+ x if a school had changed principals instead of keeping the same principal? An

important practical issue to consider is the sample of schools who contribute to estimating

rSamePrin
x and rDiffPrin

x . Principals’ tenures tend to be short, so fewer schools contribute to

rSamePrin
x as x increases (see N same

x in Table 2). Accordingly, one potential concern is that

for larger x the characteristics of the schools for estimating rDiffPrin
x and rSamePrin

x are quite

different, such that rDiffPrin
x provides an inaccurate counterfactual. For example, some schools

may have characteristics that make school performance more stable over time (independent

of who leads them) and make principals more likely to remain in their position. When x

is large, such schools may be overrepresented in rSamePrin
x and underrepresented in rDiffPrin

x ,

which would lead to upward bias in the estimated magnitude of principal effects.

To examine this potential source of bias, Appendix Tables E.1–E.3 show mean charac-

teristics for the rSamePrin
x and rDiffPrin

x samples. In general, these sets of school-by-year pairs

are observably similar; on average, they serve students with similar demographics, prior

achievement, and attendance rates. Teacher composition in terms of years experience and

value-added are also very similar. In Oregon, however, we observe that as x increases, the

rSamePrin
x sample becomes increasingly higher-achieving and less impoverished. This trend

corresponds to the divergence of rSamePrin
x and rDiffPrin

x in Tables 2 and 3, whereby the esti-
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mated magnitude of principal effects was increasing with x. One potential explanation, then,

is that this divergence is a product of increasing imbalance between the samples for rSamePrin
x

and rDiffPrin
x , whereby rDiffPrin

x is an increasingly poor counterfactual for the non-principal-

driven stability of schools that keep their principal for an extended period.

As an additional check, we re-estimate rSamePrin
x and rDiffPrin

x in Oregon using a matched

sample of schools that are more balanced on observables.29 Specifically, we employ a coars-

ened exact matching approach using strata defined by schools’ shares of low-income and

white students, as well as students’ prior-school achievement scores (see Appendix E for

details on the matching procedure). Using the matched samples, we no longer observe that

rSamePrin
x − rDiffPrin

x increases with x, which provides suggestive evidence that the larger SD

estimates in OR for higher lags are driven by selection rather than true principal effects.

5.5 Examining Mechanisms

To this point, our analysis establishes that there is substantial within-school variation in

student test score performance. These changes over time exhibit autocorrelation, but this

dynamic pattern does not seem to be driven by principals. What, then, might be driving

the dynamic component? We examine two sets of mechanisms. The first are fluctuations

in teacher composition. While principals are perceived as key human capital managers for

schools—both through considerable autonomy to hire new teachers and their influence over

teacher retention—they undoubtedly have incomplete control over teacher composition. For

instance, a new principal typically inherits most of the teachers hired under their predeces-

sor(s). Additionally, while principals may have autonomy in choosing which teacher appli-

cants to hire, the applicant pool may be mostly out of their control. Finally, while prior work

suggests that effective principals can lower teacher turnover, teachers’ mobility decisions can

not be fully attributed to principals. In short, a school’s teaching staff is constantly in flux

29. We also implemented the same matching approach in Tennesee and New York City. However, the
rSamePrin
x and rDiffPrin

x results were very similar to our baseline results, which is unsurprising given that
rSamePrin
x and rDiffPrin

x schools were already observably similar.
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and likely only partially attributable to the principal.

Changes in teacher composition likely contribute to the autocorrelated nature of school

performance. To see this, consider the retirement of a highly effective teacher. The subse-

quent impact on school performance will manifest as both a short-term disruptive effect and

a longer-term compositional effect. The latter effect, which is the difference between the

effectiveness of the retiring teacher and their replacement, is not a one-time shock to school

performance because the replacement likely stays in the school for multiple years.

To investigate this, we examine rSamePrin
x and rDiffPrin

x for two measures of teacher com-

position: mean teacher experience and mean teacher value-added. For the latter, we follow

the methodology of Chetty, Friedman, and Rockoff (2014a) to construct a drift-adjusted VA

measure, but we use only a teacher’s performance from a different school.30 This avoids

estimating teacher VA from the same test score residuals that form our school performance

measures. Figure 6 shows the results. The logic is parallel to the results for test score resid-

uals in Figure 2. If principals drive systematic changes in teacher composition, we should

observe stronger correlations within the same principal than across principals.

This is not the case. For both measures, there is a clear decreasing pattern in the corre-

lations over time, demonstrating ebbs and flows in a school’s average teacher composition.

These changes, however, do not appear to be driven by principals. These results provide

some insight regarding the school performance patterns. Abundant evidence demonstrates

that teacher quality is a key within-school factor for student test-score growth and longer-

term outcomes (e.g., Chetty, Friedman, and Rockoff 2014b). Changes in a school’s teaching

staff, then, will drive changes in Ȳ ∗
spt.31 To the extent that principals can meaningfully shape

30. This is functionally similar to how Chetty, Friedman, and Rockoff (2014a) construct leave-out VA for
their quasi-experimental test of teacher switches. Whereas they predict teacher VA in year t using test score
residuals from more than three years prior or two years after, we predict teacher VA in year t using all test
score residuals where the teacher was working in a different school.
31. Appendix Tables A.7–A.9 provide empirical support for this claim. Specifically, we estimate via first

differences the relationship between school performance and mean teacher VA (using the leave-out-current-
school measure and experience). We find that changes in VA positively predict changes in test score residuals,
except for reading in NYC. In all contexts, the relationship between change in mean teacher experience and
change in test score residuals is close to zero. This is unsurprising, perhaps, because we are looking at all
of the teachers in the school, not just those teaching students whose test scores contribute to the school
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teacher quality through strategic human capital management, this would be a key mecha-

nism through which they drive changes in student test scores. These results challenge that

chain of logic. This is, of course, not to say that principals are unable to shape students out-

comes through human capital management in certain contexts or in schools with alternate

governance structures. We do not, however, see evidence that this is occurring systematically

across these contexts, at least with respect to teacher VA and experience. While this may

be explained by constraints (e.g., incomplete autonomy to dismiss teachers or a persistently

weak hiring pool), it could also reflect that principals’ preferences with respect to teacher

composition are not aligned with these measures (e.g., Ballou 1996; Goldring et al. 2015).32

The second mechanism we investigate is the composition of entering cohorts of students

over time. The intuition here is that different student cohorts entering from common “feeder”

schools and neighborhoods may have different performance profiles as the effectiveness of

students’ prior schools ebbs and flows or compositional changes occur in the neighborhood.

These student cohorts remain in the school for several years and so their entry “shock”

is not purely transient. We anticipate that principals have relatively little influence over

students’ prior-school outcomes. However, if students’ prior-school outcomes follow the same

autocorrelation pattern as their current school performance (higher correlations in the most

proximal years, declining over time), it would suggest that the dynamic patterns in school

performance may be influenced by these trends.

We document in Figure 7 that students’ prior-school lagged test score outcomes follow

the same dynamic pattern as their performance in their current school, and therefore may

explain some of the semi-persistent variation in school performance. In particular, students’

prior-school outcomes are strongly correlated in immediately adjacent years, but these auto-

correlations tail off over the subsequent years. These results highlight the dynamic, shifting

nature of the prior performance of students entering into schools and offers at least sug-

performance measure.
32. Even if principals seek to maximize teacher VA, there may be an informational constraint at the time

of hire about who will be a high-VA teacher.
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gestive evidence of what may be driving autocorrelations in school performance. While

VA models that control for prior test scores will help account for drift in incoming cohort

quality, the presence of these patterns hints at the possibility of cohort-level fluctuations on

unobservables, which would contribute to the dynamic nature of school performance.

6 Conclusion

Principals play a central role in schools, and there is substantial interest from researchers

and policy makers in understanding the extent to which principals affect student outcomes.

This interest stems, at least in part, from a dominant paradigm asserting that effective

principals should produce better outcomes for students. Even without calculating explicit

measures of principal value-added, 46 states now incorporate school-level, student-outcome-

based measures into principal evaluation systems (Donaldson et al. 2021). There has also

been a proliferation of research using test score-based measures to draw inferences about the

effectiveness of policies and practices related to school leadership.

Our key empirical result is that most of the within-school variation in school performance—

as measured by the average student’s yearly test score residual—does not appear to be caused

by effectiveness differences across principals. Specifically, while we find meaningful within-

school variation in student test score performance when comparing across principals (which

is the identifying variation for principal VA models), this variation is mostly driven by tran-

sient school factors that are likely to have occurred regardless of who was leading the school.

Because these school factors exhibit some persistence across years, they create the illusion of

principal effects even when applying shrinkage approaches that assume no serial correlation

of residuals.

From this empirical result come two important findings. The first concerns the magnitude

of principals’ effects on student outcomes. Once accounting for the dynamic nature of school

performance, variation in principal quality explains relatively little of the observed variation
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in student test scores or attendance. Our estimates imply that a 1 SD increase in principal

quality raises student test scores by 0.03 SD in math and 0.01 SD in reading. These magni-

tudes refute the existing literature, where principals’ estimated impacts are much larger in

magnitude. An important exception is Laing et al. (2016), whose variance-based estimates

using similar methodology to ours yield somewhat smaller estimates than found in the rest

of the literature. Our estimates are still consistent with the notion that principals can play

a role in improving student outcomes. Despite relatively small magnitudes at the individual

student level, principals’ impacts apply to hundreds of students across an entire school.

The second finding is that, at least as currently implemented, attempts to identify high-

quality principals through student outcomes are fundamentally flawed. By misattributing to

principals the effects of dynamic changes in school-level factors that principals do not appear

to control, these value-added approaches yield biased and unreliable estimates of individual

principals’ effects. Given the short tenure of the typical principal, most of their “value added”

reflects the (mis)fortune of when they entered the school, as opposed to their own leadership

effectiveness. To the extent that the current test score performance of a principal’s school

informs high-stakes decision-making (contract renewals, salary increases, etc.), our results

imply substantial inefficiencies. While districts or states do not currently employ principal

value-added models, they often rely on even cruder test-score-based measures, such as school

value-added or changes in proficiency rates, to formally or informally evaluate principals

(Donaldson et al. 2021). These measures likely suffer from the same misattribution and

imprecision issues we demonstrate here.

Given that many principals do not remain in the same school beyond a few years, we sug-

gest some caution in the interpretation of our findings concerning the magnitude of principal

effects. The frequent churn of school leaders could be part of the substantive explanation

for why we observe little variation in principals’ measured impacts. Nonetheless, our key

results largely hold even among longer-tenured principals and in a context (New York City)

where relatively more principals remain in their schools for an extended period. It is also
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important to note that we do not establish that principals cannot meaningfully influence the

school factors that drive student achievement. For instance, there are examples of contexts

where principals have the information and/or autonomy required to engage in strategic hu-

man capital management (e.g., Jacob 2011; Grissom and Bartanen 2019b; Boyd et al. 2011;

Goldring et al. 2015). Our results, however, suggest that such behaviors are not driving

systematic differences in school performance across principals, on a large scale.

In considering what might explain these results, it seems unlikely that principals seek

to maximize objectives that are entirely orthogonal to improving student achievement and

attendance, particularly given that our panels overlap with the height of the accountability

movement in U.S. education policy. Thus, one potential explanation is that the typical

principal faces considerable constraints on their ability to shape school factors like teacher

composition or skill, particularly in the short run. Another possibility is that principals

focus on additional goals beyond raising average test scores or attendance, such as student

and teacher well-being. The latter could follow from the former if principals internalize

their limited capacity to drive test score gains. In this vein, principals may contribute

more substantially to other important conditions for teaching and learning in a school or to

longer-term outcomes that contemporaneous test scores and attendance fail to measure.

Finally, we urge additional study—particularly using designs that credibly support causal

inferences—of the effects of differences in principal behaviors and skills on student near-

and longer-term outcomes that would allow researchers and practitioners to look inside the

“black box” of effective leadership. Given the inherent challenges in measuring principal

performance, a deeper understanding of the mechanisms that link effective leadership to

student outcomes is an important avenue for future research.
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Figure 1: Autocorrelation Vectors

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test scores generated from Equation 7. Correlations are between
year t and t + x for the same school, where x is denoted by the x-axis value. Model 1 adjusts for student
demographic characteristics, Model 2 adds cubic polynomials of lagged-test scores and attendance, Model 3
restricts to students in first year in school, Model 4 uses prior-school outcomes. Models 3 and 4 not estimated
for NYC because we do not observe year of first enrollment. Sample sizes for each correlation are shown in
Tables 2 and 3.
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Figure 2: Autocorrelations Within and Between Principals

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test scores generated from Equation 7. Correlations are between
year t and t + x for the same school, where x is denoted by the x-axis value. Same principal denotes the
sub-sample of school-by-year pairs where the principal is the same in both years. Different principal denotes
the sub-sample where the principal in year t is different than year t+ x. Residualization models adjust for
student demographic characteristics and cubic polynomials of lagged-test scores and attendance (Model 2).
Sample sizes for each correlation are shown in Tables 2 and Table 3.
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Figure 3: Autocorrelations of Perceptions of Performance, Within and Between Principals

Notes: Figures report autocorrelation “drift” vectors generated from supervisor and teacher ratings. Correla-
tions are between year t and t+x for the same school, where x is denoted by the x-axis value. Same principal
denotes the sub-sample of school-by-year pairs where the principal is the same in both years. Different prin-
cipal denotes the sub-sample where the principal in year t is different than year t + x. Correlations are
unweighted for supervisor ratings. For teacher ratings, we weight by the number of teachers that responded
to the survey from which the measure is constructed.
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Figure 4: Event Study (Math)

Notes: Figures report event-study estimates and 95% confidence intervals from Equation 10. Residualization
models adjust for student demographic characteristics and cubic polynomials of lagged-test scores and at-
tendance (Model 2). High-performing and low-performing principals are defined by current-school-leave-out
principal VA measure generated from Equation 9. Standard errors adjusted for clustering at the school-
spell level. School-by-year cells are weighted by the number of students contributing to the mean test score
residual measure in the given year.
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Figure 5: Event Study (Reading)

Notes: Figures report event-study estimates and 95% confidence intervals from Equation 10. Residualiza-
tion models adjust for student demographic characteristics and cubic polynomials of lagged-test scores and
attendance (Model 2). High-performing and low-performing principals defined by current-school-leave-out
principal VA measure generated from Equation 9. Standard errors adjusted for clustering at the school-
spell level. School-by-year cells are weighted by the number of students contributing to the mean test score
residual measure in the given year.
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Figure 6: Autocorrelation Vectors for Teacher Composition

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted corre-
lations of school-by-year mean teacher experience and value-added (pooling math and reading teachers).
Correlations are between year t and t+ x for the same school, where x is denoted by the x-axis value. Same
principal denotes the sub-sample of school-by-year pairs where the principal is the same in both years. Dif-
ferent principal denotes the sub-sample where the principal in year t is different than year t+x. For teacher
experience, school-by-year cells are weighted by the number of teachers in the school. For VA, school-by-year
cells are weighted by the number of teachers with a VA estimate.
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Figure 7: Autocorrelation Vectors for Student Composition Using Prior-School Lagged
Test Scores

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted cor-
relations of school-by-year prior-school outcomes for both new-to-school and all students generated from
Equation 7. Correlations are between year t and t+ x for the same school, where x is denoted by the x-axis
value. Same principal denotes the sub-sample of school-by-year pairs where the principal is the same in both
years. Different principal denotes the sub-sample where the principal in year t is different than year t + x.
OR results exclude HS students as very few new-to-school students have a prior-school and a current-year
score because only a small number of 9th-grade students appear in our sample prior to 2014 and none after-
wards.We cannot produce these results for NYC, as we do not have information about when a student first
enrolls in a school.
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Table 1: Variance Decomposition (Math)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Tennessee
Random Effects Parameters (SD)
School 0.411 0.296 0.128 0.173 0.161
Principal 0.136 0.136 0.094 0.111 0.121
Residual 0.173 0.168 0.154 0.162 0.147
Variance Components (%)
School 77.7 65.1 33.2 43.8 41.7
Principal 8.5 13.9 18.2 17.9 23.5
Residual 13.8 21.1 48.6 38.3 34.7
N (Schools) 1841 1841 1841 1421 1300
N (Principal-by-School) 4797 4797 4797 3265 3007
N (School-by-Year Cells) 17553 17553 17553 10461 9876
Mean Students Per Cell 291 291 291 163 313

Panel B: New York City
Random Effects Parameters (SD)
School 0.500 0.236 0.114
Principal 0.170 0.129 0.061
Residual 0.150 0.138 0.112
Variance Components (%)
School 83.0 61.0 44.2
Principal 9.6 18.2 12.8
Residual 7.5 20.8 43.0
N (Schools) 1317 1317 1317
N (Principal-by-School) 3489 3489 3489
N (School-by-Year Cells) 18350 18350 18350
Mean Students Per Cell 338 338 338

Panel C: Oregon
Random Effects Parameters (SD)
School 0.362 0.322 0.169 0.243 0.265
Principal 0.117 0.114 0.074 0.100 0.096
Residual 0.143 0.137 0.138 0.146 0.127
Variance Components (%)
School 79.5 76.5 54.1 65.5 73.4
Principal 8.2 9.6 10.2 11.0 9.7
Residual 12.3 13.9 35.7 23.5 16.9
N (Schools) 1269 1269 1269 863 816
N (Principal-by-School) 3559 3559 3559 1869 1655
N (School-by-Year Cells) 11815 11815 11815 5034 4322
Mean Students Per Cell 243 243 243 145 229

Student Characteristics X X X X
Prior-Year Test Scores X X
New-to-School Students Only X
Prior-School Test Scores X

Notes: Cells report standard deviations of variance components and percentage of overall variance explained from Equation
8. Model 0 uses raw test scores, Model 1 adjusts for student demographic characteristics, Model 2 adds cubic polynomials of
lagged-test scores and attendance, Model 3 restricts to students in first year in school, Model 4 uses prior-school outcomes.
Models 3 and 4 not estimated for NYC because we do not observe year of first enrollment. All models include grade and
year fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity, disability status, 504 plan
designation, participation in migrant or Indian education program and the school averages of the preceding characteristics. All
samples restricted to observations with at least 25 students in each school-by-year cell.
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Table 2: Testing Differences in Autocorrelations (Math)

x N same
x Ndiff

x rsame
x rdiffx diffx p-val SDx

Panel A: Tennessee
1 year 11846 2460 0.605 0.569 0.036 0.012 0.035
2 years 8429 4023 0.494 0.459 0.034 0.020 0.034
3 years 6038 4928 0.425 0.386 0.040 0.014 0.036
4 years 4670 5853 0.350 0.338 0.012 0.497 0.020
5 years 3181 5758 0.301 0.313 -0.012 0.539 0.000
6 years 2125 5254 0.272 0.244 0.028 0.250 0.030
7 years 1312 4545 0.193 0.189 0.004 0.895 0.012
8 years 786 3589 0.229 0.157 0.072 0.056 0.049
9 years 599 3416 0.230 0.185 0.045 0.292 0.039
10 years 340 2426 0.331 0.143 0.188 0.001 0.079
Pooled SD Estimate 0.032
Panel B: New York City
1 year 14848 2015 0.651 0.605 0.046 0.001 0.030
2 years 11900 3693 0.609 0.567 0.042 0.001 0.029
3 years 9437 4924 0.543 0.519 0.024 0.056 0.022
4 years 7462 5728 0.509 0.482 0.027 0.039 0.023
5 years 5897 6136 0.471 0.456 0.014 0.314 0.017
6 years 4629 6278 0.436 0.430 0.006 0.696 0.011
7 years 3597 6201 0.410 0.410 -0.001 0.975 0.000
8 years 2745 5974 0.371 0.384 -0.013 0.518 0.000
9 years 2019 5656 0.346 0.358 -0.011 0.617 0.000
10 years 1428 5233 0.333 0.339 -0.006 0.823 0.000
Pooled SD Estimate 0.022
Panel C: Oregon
1 year 8066 2004 0.681 0.640 0.041 0.003 0.041
2 years 5543 3374 0.635 0.603 0.032 0.016 0.036
3 years 3675 4180 0.601 0.557 0.044 0.004 0.042
4 years 2374 4506 0.619 0.541 0.077 0.000 0.056
5 years 1470 4475 0.643 0.527 0.116 0.000 0.068
6 years 894 4162 0.647 0.522 0.125 0.000 0.071
7 years 534 3678 0.653 0.482 0.170 0.000 0.082
8 years 303 3040 0.675 0.518 0.157 0.000 0.079
9 years 171 2320 0.676 0.514 0.162 0.001 0.080
10 years 86 1559 0.573 0.518 0.055 0.486 0.047
Pooled SD Estimate 0.048

Notes: Table reports rsame and rdiff from sample-size-precision-weighted correlations of school-by-year mean residualized test
score generated from Equation 7. Correlations are between year t and t+ x for the same school. rsame denotes the sub-sample
of school-by-year pairs where the principal is the same in both years. rdiff denotes the sub-sample where the principal in year
t is different than year t + x. Residualization models adjust for student demographic characteristics and cubic polynomials of
lagged-test scores and attendance (Model 2). diff shows the difference in the correlations and p-val is the two-tailed p-value for
the null hypothesis that the difference in correlations is zero. SD reports the estimated standard deviation of principal value-
added based on Equation 5, which multiplies the difference in correlations by the variance of school-by-year mean residuals.
When the difference in correlations is negative, we report an estimated SD of zero. The bottom row of each panel shows
the pooled variance (reported as SD) estimate, which is obtained by computing the average of diffx (weighted by Nsame

x ) and
multiplying by σ2

Y .
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Table 3: Testing Differences in Autocorrelations (Reading)

x N same
x Ndiff

x rsame
x rdiffx diffx p-val SDx

Panel A: Tennessee
1 year 11880 2468 0.640 0.637 0.004 0.784 0.008
2 years 8457 4038 0.644 0.622 0.021 0.062 0.019
3 years 6056 4947 0.611 0.589 0.022 0.068 0.020
4 years 4685 5875 0.595 0.579 0.016 0.206 0.017
5 years 3189 5775 0.578 0.571 0.007 0.639 0.011
6 years 2131 5272 0.551 0.550 0.001 0.971 0.003
7 years 1313 4565 0.542 0.521 0.021 0.345 0.019
8 years 785 3599 0.494 0.481 0.013 0.668 0.015
9 years 598 3420 0.533 0.508 0.026 0.425 0.021
10 years 339 2426 0.547 0.444 0.103 0.018 0.043
Pooled SD Estimate 0.016
Panel B: New York City
1 year 14832 2017 0.608 0.638 -0.030 0.038 0.000
2 years 11883 3693 0.591 0.599 -0.008 0.500 0.000
3 years 9422 4926 0.535 0.558 -0.024 0.054 0.000
4 years 7450 5728 0.513 0.520 -0.007 0.613 0.000
5 years 5888 6132 0.482 0.505 -0.023 0.096 0.000
6 years 4623 6272 0.460 0.480 -0.020 0.180 0.000
7 years 3591 6195 0.444 0.467 -0.023 0.163 0.000
8 years 2741 5966 0.440 0.471 -0.031 0.094 0.000
9 years 2016 5650 0.417 0.458 -0.041 0.052 0.000
10 years 1426 5226 0.413 0.453 -0.039 0.106 0.000
Pooled SD Estimate 0.000
Panel C: Oregon
1 year 8065 2006 0.672 0.659 0.013 0.355 0.020
2 years 5544 3375 0.628 0.625 0.003 0.848 0.009
3 years 3676 4179 0.605 0.599 0.006 0.680 0.014
4 years 2374 4503 0.584 0.583 0.002 0.914 0.008
5 years 1469 4473 0.568 0.544 0.024 0.243 0.027
6 years 893 4161 0.565 0.531 0.034 0.184 0.033
7 years 535 3682 0.567 0.516 0.051 0.121 0.040
8 years 303 3041 0.567 0.514 0.053 0.218 0.041
9 years 171 2320 0.505 0.503 0.002 0.969 0.009
10 years 86 1560 0.486 0.490 -0.004 0.962 0.000
Pooled SD Estimate 0.018

Notes: Table reports rsame and rdiff from sample-size-precision-weighted correlations of school-by-year mean residualized test
score generated from Equation 7. Correlations are between year t and t+ x for the same school. rsame denotes the sub-sample
of school-by-year pairs where the principal is the same in both years. rdiff denotes the sub-sample where the principal in year
t is different than year t + x. Residualization models adjust for student demographic characteristics and cubic polynomials of
lagged-test scores and attendance (Model 2). diff shows the difference in the correlations and p-val is the two-tailed p-value for
the null hypothesis that the difference in correlations is zero. SD reports the estimated standard deviation of principal value-
added based on Equation 5, which multiplies the difference in correlations by the variance of school-by-year mean residuals.
When the difference in correlations is negative, we report an estimated SD of zero. The bottom row of each panel shows
the pooled variance (reported as SD) estimate, which is obtained by computing the average of diffx (weighted by Nsame

x ) and
multiplying by σ2

Y .
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A Supplemental Figures and Tables
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Figure A.1: Autocorrelations Within and Between Principals (Model 1)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test score generated from Equation 7. Correlations are between
year t and t + x for the same school, where x is denoted by the x-axis value. Same principal denotes the
sub-sample of school-by-year pairs where the principal is the same in both years. Different principal denotes
the sub-sample where the principal in year t is different than year t+ x. Residualization models adjust for
student demographic characteristics (Model 1).
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Figure A.2: Autocorrelations Within and Between Principals (Model 3)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test score generated from Equation 7. Correlations are between
year t and t + x for the same school, where x is denoted by the x-axis value. Same principal denotes the
sub-sample of school-by-year pairs where the principal is the same in both years. Different principal denotes
the sub-sample where the principal in year t is different than year t+ x. Residualization models adjust for
student demographic characteristics and cubic polynomials of lagged-test scores and attendance for new-to-
school students only (Model 3). Model 3 not estimated for NYC because we do not observe year of first
enrollment. Due to very small cell sizes (< 100), we do not report the correlations for 8 years or above in
Oregon.
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Figure A.3: Autocorrelations Within and Between Principals (Model 4)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test score generated from Equation 7. Correlations are between
year t and t + x for the same school, where x is denoted by the x-axis value. Same principal denotes the
sub-sample of school-by-year pairs where the principal is the same in both years. Different principal denotes
the sub-sample where the principal in year t is different than year t + x. Residualization models adjust
for student demographic characteristics and cubic polynomials of lagged-test scores and attendance from
prior-school (Model 4). Model 4 not estimated for NYC because we do not observe year of first enrollment.
Due to very small cell sizes (< 100), we do not report the correlations for 8 years or above in Oregon.
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Figure A.4: Autocorrelation Vectors (TN Attendance)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test score generated from Equation 7. Model 1 adjusts for student
demographic characteristics, Model 2 adds cubic polynomials of lagged attendance, Model 3 restricts to
students in first year in school, Model 4 uses prior-school outcomes.
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Figure A.5: Autocorrelation Vectors (OR Attendance)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test score generated from Equation 7. Model 1 adjusts for student
demographic characteristics, Model 2 adds cubic polynomials of lagged attendance, Model 3 restricts to
students in first year in school, Model 4 uses prior-school outcomes. Due to very small cell sizes (< 100), we
do not report the correlations for 8 years of above in Oregon for Models 3 and 4.
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Figure A.6: Event Study (NYC, Math)

Notes: Figures report event-study estimates and 95% confidence intervals from Equation 10. Residualiza-
tion models adjust for student demographic characteristics and cubic polynomials of lagged-test scores and
attendance (Model 2). High-performing and low-performing principals defined by current-school-leave-out
principal VA measure generated from Equation 9. We do not present “first stage” results using principal
value-added as the outcome because there are insufficient events in NYC where we can estimate a leave-
school-out principal VA measure for both the departing and entering principal. Standard errors adjusted for
clustering at the school-spell level. School-by-year cells are weighted by the number of students contributing
to the mean test score residual measure in the given year.
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Figure A.7: Event Study (NYC, Reading)

Notes: Figures report event-study estimates and 95% confidence intervals from Equation 10. Residualiza-
tion models adjust for student demographic characteristics and cubic polynomials of lagged-test scores and
attendance (Model 2). High-performing and low-performing principals defined by current-school-leave-out
principal VA measure generated from Equation 9. We do not present “first stage” results using principal
value-added as the outcome because there are insufficient events in NYC where we can estimate a leave-
school-out principal VA measure for both the departing and entering principal. Standard errors adjusted for
clustering at the school-spell level. School-by-year cells are weighted by the number of students contributing
to the mean test score residual measure in the given year.
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Table A.1: Variance Decomposition (Reading)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Tennessee
Random Effects Parameters (SD)
School 0.430 0.294 0.119 0.167 0.143
Principal 0.092 0.085 0.045 0.056 0.065
Residual 0.119 0.113 0.099 0.113 0.096
Variance Components (%)
School 89.2 81.2 54.5 63.7 60.5
Principal 4.0 6.8 7.9 7.2 12.6
Residual 6.8 11.9 37.6 29.2 26.9
N (Schools) 1841 1841 1841 1418 1304
N (Principal-by-School) 4796 4796 4796 3264 3012
N (School-by-Year Cells) 17577 17577 17577 10488 9942
Mean Students Per Cell 326 326 326 182 364

Panel B: New York City
Random Effects Parameters (SD)
School 0.486 0.239 0.110
Principal 0.143 0.101 0.041
Residual 0.135 0.122 0.101
Variance Components (%)
School 86.0 69.6 50.6
Principal 7.4 12.5 6.9
Residual 6.6 18.0 42.5
N (Schools) 1316 1316 1316
N (Principal-by-School) 3490 3490 3490
N (School-by-Year Cells) 18337 18337 18337
Mean Students Per Cell 326 326 326

Panel C: Oregon
Random Effects Parameters (SD)
School 0.340 0.289 0.152 0.219 0.202
Principal 0.097 0.092 0.060 0.081 0.075
Residual 0.126 0.120 0.124 0.129 0.110
Variance Components (%)
School 82.0 78.4 54.9 67.5 69.6
Principal 6.6 8.0 8.6 9.2 9.7
Residual 11.4 13.6 36.5 23.3 20.7
N (Schools) 1271 1271 1271 841 820
N (Principal-by-School) 3562 3562 3562 1817 1657
N (School-by-Year Cells) 11819 11819 11819 4864 4326
Mean Students Per Cell 239 239 239 144 229

Student Characteristics X X X X
Prior-Year Test Scores X X
New-to-School Students Only X
Prior-School Test Scores X

Notes: Cells report standard deviations of variance components and percentage of overall variance explained from Equation
8. Model 0 uses raw test scores, Model 1 adjusts for student demographic characteristics, Model 2 adds cubic polynomials of
lagged-test scores and attendance, Model 3 restricts to students in first year in school, Model 4 uses prior-school outcomes.
Models 3 and 4 not estimated for NYC because we do not observe year of first enrollment. All models include grade and
year fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity, disability status, 504 plan
designation, participation in migrant or Indian education program and the school averages of the preceding characteristics. All
samples restricted to observations with at least 25 students in each school-by-year cell.
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Table A.2: Variance Decomposition (Attendance Rate, TN)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Baseline
School (SD) 0.257 0.258 0.161 0.191 0.196
% 58.0 58.5 38.6 35.0 41.4
Principal (SD) 0.126 0.124 0.070 0.112 0.122
% 14.0 13.5 7.3 12.1 16.0
Residual (SD) 0.179 0.178 0.191 0.235 0.199
% 28.1 28.0 54.1 52.9 42.5
N (Schools) 1938 1938 1938 1906 1918
N (Principals) 5095 5095 5095 4927 4963
N (School-by-Year Cells) 20153 20153 20153 19011 19435
Mean Students Per Cell 569 569 569 180 352

Panel B: AR(1) Error Structure
School (SD) 0.256 0.256 0.162 0.191 0.195
% 57.6 58.3 38.6 35.1 41.2
Principal (SD) 0.072 0.070 0.077 0.093 0.078
% 4.5 4.4 8.9 8.3 6.6
Residual (SD) 0.207 0.205 0.188 0.243 0.219
% 37.8 37.3 52.5 56.7 52.2
AR(1) Parameters
Correlation (t− 1) 0.445 0.434 -0.083 0.152 0.346

Panel C: AR(2) Error Structure
School (SD) 0.254 0.255 0.161 0.191 0.194
% 56.8 57.5 38.5 34.9 40.9
Principal (SD) 0.000 0.000 0.066 0.041 0.000
% 0.0 0.0 6.4 1.6 0.0
Residual (SD) 0.221 0.219 0.193 0.257 0.233
% 43.2 42.5 55.1 63.4 59.1
AR(2) Parameters
Correlation (t− 1) 0.437 0.431 -0.033 0.203 0.370
Correlation (t− 2) 0.149 0.142 0.112 0.158 0.122

Student Characteristics X X X X
Prior-Year Attendance X X
New-to-School Students Only X
Prior-School Attendance X
Notes: Cells report standard deviations of variance components and percentage of overall variance
explained from Equation 8. Model 0 uses raw test scores, Model 1 adjusts for student demographic
characteristics, Model 2 adds cubic polynomials of lagged attendance, Model 3 restricts to students
in first year in school, Model 4 uses prior-school outcomes. All models include grade and year
fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity, disability
status, 504 plan designation, participation in migrant or Indian education program and the school
averages of the preceding characteristics. All samples restricted to observations with at least 25
students in each school-by-year cell.
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Table A.3: Variance Decomposition (Attendance Rate, Oregon)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Baseline
School (SD) 0.219 0.212 0.122 0.260 0.252
% 69.0 67.6 47.1 69.4 69.2
Principal (SD) 0.082 0.082 0.035 0.071 0.087
% 9.8 10.1 3.8 5.1 8.3
Residual (SD) 0.121 0.122 0.124 0.158 0.144
% 21.3 22.3 49.0 25.5 22.5
N (Schools) 1347 1347 1347 1226 863
N (Principals) 3767 3767 3767 3341 1885
N (School-by-Year Cells) 12449 12449 12449 10950 5296
Mean Students Per Cell 435 435 435 132 240

Panel B: AR(1) Error Structure
School (SD) 0.219 0.212 0.122 0.260 0.254
% 69.4 68.0 47.0 69.5 70.1
Principal (SD) 0.028 0.025 0.042 0.054 0.035
% 1.2 0.9 5.5 3.0 1.3
Residual (SD) 0.143 0.143 0.122 0.164 0.162
% 29.5 31.1 47.5 27.4 28.6
AR(1) Parameters
Correlation (t− 1) 0.452 0.457 -0.078 0.148 0.351

Panel C: AR(2) Error Structure
School (SD) 0.218 0.212 0.122 0.261 0.254
% 69.0 67.7 47.1 69.6 70.1
Principal (SD) 0.000 0.000 0.034 0.033 0.031
% 0.0 0.0 3.7 1.1 1.1
Residual (SD) 0.146 0.146 0.125 0.169 0.163
% 31.0 32.3 49.2 29.3 28.9
AR(2) Parameters
Correlation (t− 1) 0.436 0.440 -0.037 0.183 0.353
Correlation (t− 2) 0.087 0.079 0.086 0.094 0.010

Student Characteristics X X X X
Prior-Year Attendance X X
New-to-School Students Only X
Prior-School Attendance X
Notes: Cells report standard deviations of variance components and percentage of overall variance
explained from Equation 8. Model 0 uses raw test scores, Model 1 adjusts for student demographic
characteristics, Model 2 adds cubic polynomials of lagged attendance, Model 3 restricts to students
in first year in school, Model 4 uses prior-school outcomes. All models include grade and year
fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity, disability
status, 504 plan designation, participation in migrant or Indian education program and the school
averages of the preceding characteristics. All samples restricted to observations with at least 25
students in each school-by-year cell.
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Table A.4: Replication of Branch, Hanushek, and Rivkin (2012)

Tennessee New York City Oregon

Math Read Math Read Math Read

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Different Principal 0.012∗∗∗ 0.005∗∗∗ 0.002∗∗∗ 0.000 0.004∗∗∗ 0.000∗ 0.002∗∗∗ -0.000∗ 0.010∗∗∗ 0.004∗∗∗ 0.008∗∗∗ 0.002∗∗
(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

Diff = 1 year (base)

Diff = 2 years 0.008∗∗∗ 0.000 0.002∗∗∗ 0.001 0.003∗∗ 0.002∗∗
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Diff = 3 years 0.012∗∗∗ 0.001∗∗ 0.004∗∗∗ 0.002∗∗∗ 0.007∗∗∗ 0.004∗∗∗
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Diff = 4 years 0.015∗∗∗ 0.001∗∗∗ 0.006∗∗∗ 0.003∗∗∗ 0.008∗∗∗ 0.006∗∗∗
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Diff = 5 years 0.017∗∗∗ 0.002∗∗∗ 0.007∗∗∗ 0.004∗∗∗ 0.009∗∗∗ 0.008∗∗∗
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Diff = 6 years 0.020∗∗∗ 0.003∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.011∗∗∗ 0.010∗∗∗
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Diff = 7 years 0.024∗∗∗ 0.004∗∗∗ 0.009∗∗∗ 0.005∗∗∗ 0.015∗∗∗ 0.012∗∗∗
(0.001) (0.001) (0.000) (0.000) (0.001) (0.001)

Diff = 8 years 0.025∗∗∗ 0.005∗∗∗ 0.009∗∗∗ 0.005∗∗∗ 0.014∗∗∗ 0.014∗∗∗
(0.001) (0.001) (0.001) (0.000) (0.002) (0.001)

Diff = 9 years 0.021∗∗∗ 0.004∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.017∗∗∗ 0.018∗∗∗
(0.001) (0.001) (0.001) (0.000) (0.002) (0.001)

Diff = 10 years 0.018∗∗∗ 0.005∗∗∗ 0.011∗∗∗ 0.005∗∗∗ 0.025∗∗∗ 0.026∗∗∗
(0.002) (0.001) (0.001) (0.000) (0.002) (0.002)

Diff = 11 years 0.016∗∗∗ 0.003∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.046∗∗∗ 0.048∗∗∗
(0.002) (0.001) (0.001) (0.000) (0.003) (0.002)

Diff = 12 years 0.010∗∗∗ 0.006∗∗∗
(0.001) (0.001)

Diff = 13 years 0.009∗∗∗ 0.006∗∗∗
(0.001) (0.001)

Diff = 14 years 0.010∗∗∗ 0.007∗∗∗
(0.001) (0.001)

Diff = 15 years 0.009∗∗∗ 0.006∗∗∗
(0.001) (0.001)

Diff = 16 years 0.010∗∗∗ 0.005∗∗∗
(0.001) (0.001)

Diff = 17 years 0.008∗∗∗ 0.006∗∗∗
(0.001) (0.001)

Constant 0.035∗∗∗ 0.026∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.018∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.012∗∗∗ 0.028∗∗∗ 0.024∗∗∗ 0.022∗∗∗ 0.019∗∗∗
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

Within-school Variance 0.006 0.003 0.001 0.000 0.002 0.000 0.001 0.000 0.005 0.002 0.004 0.001
Within-school SD 0.079 0.052 0.030 0.014 0.044 0.015 0.028 0.000 0.071 0.043 0.064 0.030
N 82954 82954 83193 83193 137470 137470 137318 137318 57228 57228 57231 57231

Notes: Coefficients are from models estimated via OLS predicting the squared difference between school-by-year mean residuals
in year t and t∗ as a function of whether the principal is different in those years. Even columns add controls for the difference
in time between the two school-by-year cells that form the dependent variable. The within-school variance is equal to one-half
of the coefficient on different principal, per the framework in Branch, Hanushek, and Rivkin (2012). Standard errors shown in
parentheses. N refers to the total number of pairs of school-by-year cells. Each pair is weighted by the sum of the number of
students that contribute to the school-by-year mean residual test score.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A.5: Falsification Tests for Principal Variance Component (Math)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Tennessee
Actual Data 0.136 0.136 0.094 0.111 0.121
Imputed Data (mean of 100 iterations) 0.121 0.121 0.082 0.097 0.105
Imputed Data (min) 0.115 0.115 0.075 0.089 0.096
Imputed Data (max) 0.127 0.127 0.088 0.105 0.111
Panel B: New York City
Actual Data 0.170 0.129 0.061
Imputed Data (mean of 100 iterations) 0.151 0.120 0.056
Imputed Data (min) 0.142 0.114 0.052
Imputed Data (max) 0.160 0.126 0.060
Panel C: Oregon
Actual Data 0.117 0.114 0.074 0.100 0.096
Imputed Data (mean of 100 iterations) 0.108 0.105 0.064 0.085 0.086
Imputed Data (min) 0.101 0.098 0.056 0.073 0.076
Imputed Data (max) 0.116 0.112 0.072 0.097 0.100
Student Characteristics X X X X
Prior-Year Test Scores X X
New-to-School Students Only X
Prior-School Test Scores X

Notes: Cells report standard deviations of principal variance components estimated from Equation 8. Actual Data reports
the estimate shown in Table 1. To run our falsification tests, we reassign each school to have a different principal assignment
history based on the observed history from another school in the dataset (picked at random). We then estimate our variance
decomposition models using these imputed principal assignments. We report the mean across 100 iterations for the estimated
principal variance components (in SD units). We also report the minimum and maximum estimate across the 100 iterations.
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Table A.6: Falsification Tests for Principal Variance Component (Reading)

Model 0 Model 1 Model 2 Model 3 Model 4
Panel A: Tennessee
Actual Data 0.092 0.085 0.045 0.056 0.065
Imputed Data (mean of 100 iterations) 0.083 0.078 0.039 0.050 0.059
Imputed Data (min) 0.078 0.073 0.035 0.043 0.053
Imputed Data (max) 0.088 0.082 0.044 0.060 0.066
Panel B: New York City
Actual Data 0.143 0.101 0.041
Imputed Data (mean of 100 iterations) 0.129 0.098 0.039
Imputed Data (min) 0.119 0.092 0.034
Imputed Data (max) 0.140 0.105 0.044
Panel C: Oregon
Actual Data 0.097 0.092 0.060 0.081 0.075
Imputed Data (mean of 100 iterations) 0.092 0.087 0.057 0.067 0.068
Imputed Data (min) 0.086 0.082 0.050 0.057 0.059
Imputed Data (max) 0.096 0.093 0.065 0.077 0.076
Student Characteristics X X X X
Prior-Year Test Scores X X
New-to-School Students Only X
Prior-School Test Scores X

Notes: Cells report standard deviations of principal variance components estimated from Equation 8. Actual Data reports the
estimate shown in Table A.1. To run our falsification tests, we reassign each school to have a different principal assignment
history based on the observed history from another school in the dataset (picked at random). We then estimate our variance
decomposition models using these imputed principal assignments. We report the mean across 100 iterations for the estimated
principal variance components (in SD units). We also report the minimum and maximum estimate across the 100 iterations.
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Table A.7: First-Differences Estimates Predicting Mean Test Score Residuals (Model 2, TN)

∆ Math Residuals ∆ Reading Residuals

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Math Value-Added 0.296∗∗∗ 0.301∗∗∗ 0.224∗∗∗ 0.031 0.021
(0.025) (0.027) (0.025) (0.018) (0.017)

∆ Reading Value-Added 0.079 0.077 0.156∗∗∗ 0.170∗∗∗ 0.122∗∗∗
(0.054) (0.052) (0.036) (0.040) (0.036)

∆ Teacher Experience 0.000 -0.001 -0.001 -0.001
(0.001) (0.002) (0.001) (0.001)

N 10091 8338 13747 8325 9998 8338 13784 8325
Notes: Coefficients shown are from first differences models where the dependent variable is defined by the header. Columns 1,
2, and 4 (5, 7, and 8) are weighted by the number of teachers in the school-by-year cell with non-missing math (reading) VA.
Teacher-level VA estimates are produced using the drift-adjusted framework outlined in Chetty, Friedman, and Rockoff (2014a),
where we predict VA in year t only using test score residuals from when a teacher worked in a different school. Columns 3 and
7 are weighted by the total number of teachers in the school-by-year cell. Heteroskedasticity-robust standard errors shown in
parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A.8: First-Differences Estimates Predicting Mean Test Score Residuals (Model 2,
NYC)

∆ Math Residuals ∆ Reading Residuals

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Math Value-Added 0.083∗∗∗ 0.096∗∗∗ 0.070∗∗∗ 0.053∗∗ 0.049∗∗
(0.018) (0.020) (0.018) (0.018) (0.017)

∆ Reading Value-Added -0.020 -0.013 0.002 -0.023 -0.031
(0.024) (0.021) (0.020) (0.023) (0.020)

∆ Teacher Experience 0.000 -0.000 0.004∗∗∗ 0.004∗∗∗
(0.001) (0.001) (0.001) (0.001)

N 15436 14961 16614 15085 15330 14967 16613 15085
Notes: Coefficients shown are from first differences models where the dependent variable is defined by the header. Columns 1,
2, and 4 (5, 7, and 8) are weighted by the number of teachers in the school-by-year cell with non-missing math (reading) VA.
Teacher-level VA estimates are produced using the drift-adjusted framework outlined in Chetty, Friedman, and Rockoff (2014a),
where we predict VA in year t only using test score residuals from when a teacher worked in a different school. Columns 3 and
7 are weighted by the total number of teachers in the school-by-year cell. Heteroskedasticity-robust standard errors shown in
parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Table A.9: First-Differences Estimates Predicting Mean Test Score Residuals (Model 2, OR)

∆ Math Residuals ∆ Reading Residuals

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Math Value-Added 0.213∗∗∗ 0.195∗∗ 0.155∗∗ 0.013 0.028
(0.047) (0.063) (0.054) (0.062) (0.053)

∆ Reading Value-Added 0.189∗∗ 0.177∗∗ 0.213∗∗∗ 0.223∗∗∗ 0.170∗∗
(0.064) (0.059) (0.058) (0.065) (0.058)

∆ Teacher Experience 0.001 0.005∗ -0.001 0.005∗
(0.001) (0.002) (0.001) (0.002)

N 2038 1410 9706 1411 1730 1408 9704 1411
Notes: Coefficients shown are from first differences models where the dependent variable is defined by the header. Columns 1,
2, and 4 (5, 7, and 8) are weighted by the number of teachers in the school-by-year cell with non-missing math (reading) VA.
Teacher-level VA estimates are produced using the drift-adjusted framework outlined in Chetty, Friedman, and Rockoff (2014a),
where we predict VA in year t only using test score residuals from when a teacher worked in a different school. Columns 3 and
7 are weighted by the total number of teachers in the school-by-year cell. Heteroskedasticity-robust standard errors shown in
parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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B Data Description

Table B.1: Descriptive Statistics (Tennessee)

Math Sample Reading Sample Attend Sample
Mean SD Mean SD Mean SD

Students
Asian 0.02 0.02 0.02
American Indian 0.00 0.00 0.00
Black 0.24 0.24 0.24
Hispanic 0.07 0.07 0.08
Pacific Islander 0.00 0.00 0.00
White 0.66 0.67 0.66
Qualifies for FRPL 0.49 0.48 0.49
Enrolled in Special Education 0.10 0.11 0.13
English Learner Classification 0.03 0.02 0.03
Standardized Math Score -0.01 0.99 0.01 1.00
Standardized Reading Score -0.01 0.99 0.01 0.99
Proportion Days Absent 0.05 0.05 0.05 0.06 0.05 0.06
Standardized Math Score (prior-year) 0.01 0.96 0.04 0.98
Standardized Reading Score (prior-year) -0.00 0.97 0.02 0.97
Proportion Days Absent (prior-year) 0.05 0.05 0.05 0.05 0.05 0.05
Missing Prior-year Math Score 0.07 0.06
Missing Prior-year Reading Score 0.06 0.06
Missing Prior-year Absence Rate 0.04 0.04 0.03
Sample Size (Student-by-Year) 5,225,333 5,841,584 9,991,519
Unique Students 1,427,053 1,488,638 1,945,046
Principals
Female 0.55 0.55 0.56
Black 0.19 0.19 0.19
White 0.81 0.81 0.81
Other Race/Ethnicity 0.00 0.00 0.00
Age 49.75 8.95 49.74 8.95 49.68 8.99
Years of Experience (total) 22.33 9.24 22.32 9.25 22.22 9.29
Years of Experience (principal) 4.87 3.80 4.86 3.80 4.90 3.86
Years in Current School (principal) 3.74 3.43 3.74 3.42 3.77 3.48
Elementary School 0.57 0.57 0.59
Middle School 0.20 0.20 0.19
High School 0.19 0.19 0.18
Other Level School 0.04 0.04 0.04
Sample Size (Principal-by-Year) 17,553 17,577 19,867
Unique Principals 3,925 3,925 4,095
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Table B.2: Descriptive Statistics (New York City)

Math Sample Reading Sample
Mean SD Mean SD

Students
Female 0.49 0.49
Asian 0.14 0.14
Black 0.31 0.31
Hispanic/Latino 0.40 0.39
White 0.15 0.15
Other Race/Ethnicity 0.01 0.01
English Learner Classification 0.12 0.09
Qualifies for FRPL 0.82 0.82
Enrolled in Special Education 0.16 0.17
Standardized Math Score -0.00 1.00 0.03 0.99
Standardized Reading Score 0.00 1.00 0.00 1.00
Standardized Math Score (prior-year) 0.04 0.97 0.06 0.97
Standardized Reading Score (prior-year) 0.04 0.97 0.04 0.97
Missing Prior-year Math Score 0.08 0.06
Missing Prior-year Reading Score 0.12 0.09
Sample Size (Student-by-Year) 6,194,478 5,976,223
Unique Students 1,834,499 1,773,424
Principals
Female 0.71 0.71
Black 0.27 0.27
White 0.48 0.48
Hispanic/Latino 0.07 0.07
Other Race/Ethnicity 0.03 0.03
Missing Race/Ethnicity 0.15 0.15
Age 50.57 8.36 50.57 8.36
Years of Experience (total) 26.42 26.42
Years of Experience (principal) 4.84 4.41 4.84 4.41
Years in Current School (principal) 4.60 4.41 4.60 4.41
Sample Size (Principal-by-Year) 18,238 18,240
Unique Principals 3,200 3,201
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Table B.3: Descriptive Statistics (Oregon)

Math Sample Reading Sample Attend Sample
Mean SD Mean SD Mean SD

Students
Asian/Pacific Islander 0.07 0.07 0.07
American Indian/Alaska Native 0.02 0.02 0.02
Black 0.02 0.02 0.03
Hispanic/Latino 0.21 0.22 0.21
White 0.65 0.65 0.65
Other Race/Ethnicity 0.03 0.03 0.03
Qualifies for FRPL 0.51 0.51 0.50
Enrolled in Special Education 0.13 0.13 0.14
Limited English Proficiency 0.07 0.07 0.08
504 Plan Designation 0.02 0.02 0.02
Migrant Designation 0.02 0.02 0.02
Indian Education Designation 0.01 0.01 0.01
Standardized Math Score 0.04 0.99
Standardized Reading Score 0.04 0.99
Proportion Days Absent 0.06 0.07
Standardized Math Score (prior-year) 0.04 0.99 0.04 0.99
Standardized Reading Score (prior-year) 0.03 0.99 0.03 0.99
Proportion Days Absent (prior-year) 0.05 0.06 0.05 0.06 0.06 0.06
Missing Prior-year Math Score 0.10 0.13
Missing Prior-year Reading Score 0.14 0.10
Missing Prior-year Absence Rate 0.03 0.02 0.03
Sample Size (Student-by-Year) 2,874,460 2,830,334 5,419,600
Unique Students 846,570 839,055 1,134,496
Principals
Female 0.50 0.50 0.50
American Indian 0.01 0.01 0.01
Asian/Pacific Islander 0.02 0.02 0.02
Black 0.02 0.02 0.02
Hispanic/Latino 0.05 0.05 0.05
Multi-Racial 0.02 0.02 0.02
White 0.86 0.86 0.86
Other Race/Ethnicity 0.03 0.03 0.03
Age 47.95 8.10 47.95 8.10 48.00 8.15
Years of Experience (total) 19.33 8.48 19.33 8.48 19.29 8.53
Years of Experience (principal) 2.82 2.63 2.81 2.63 2.80 2.63
Years in Current School (principal) 1.99 2.10 1.99 2.10 1.97 2.10
Elementary School 0.50 0.50 0.50
Middle School 0.17 0.17 0.17
High School 0.16 0.16 0.16
Other Level School 0.16 0.16 0.16
Sample Size (Principal-by-Year) 11,815 11,819 12,449
Unique Principals 2,651 2,653 2,757
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B.1 Tennessee

Data Construction and Sample Restrictions. The Tennessee data are constructed
from yearly base datasets of staff and students, respectively. The staff data are available
beginning in the 2001–02 school year and include demographic, position/assignment, and
salary information for all individuals working in a K–12 public school in Tennessee. These
yearly data files allow us to identify the principal and teachers working in a particular school.
In a small percentage of schools each year (roughly 5%), there is insufficient information to
reliably identify a single principal either because no staff member identified as a principal is
working in the school, or because there are many identified principals in one school. We drop
these cases from our analytic dataset. Between 2006–07 and 2018–19, we observe 22,174
school-by-year observations with an identified principal. This baseline sample is further
reduced by the availability of student test score and attendance data, described below.

The student-level data are first available in 2006–07 and include information about each
student’s demographics, specific dates of enrollment and withdrawal at each school they
attended during the year, daily attendance records, and scores on end-of-year exams. Test
score records include a school identifier, which is how we link students to schools in a particu-
lar year. Each student is only linked to one school in a given year based on this information.
Test scores include statewide end-of-year exams in math and reading for grades 3–8 and
end-of-course exams for high school students and advanced middle school students. End-
of-course exams in math subjects include algebra I, (2007–2019), algebra II (2012–2019),
geometry I (2016–2019), and integrated math I, II, and III (separate exams for each, 2016–
2019). End-of-course exams in reading subjects include English I (2007–2019), English II,
(2007–2019), and English III (2012–2018). Prior to 2011–12, 7th and 8th grade students
who were enrolled in Algebra I courses took the end-of-course exams.

For the math test score sample, we begin with 6,807,025 million observed student-year-
exam observations. We then make the following successive restrictions: (1) we drop all
observations from 2006–07 (495,346) because there are no prior-year test scores. (2) We
then eliminate 3rd grade students (811,341) because they have no prior test score. (3) We
then drop 15,596 observations where there were inconsistencies in the student’s assigned
grade based on enrollment data and test score data. (4) We then drop 131,713 observations
for middle or elementary school students who took EOC exams in Algebra I. These students
also took their respective end-of-grade exams and thus are retained in the sample, but we
avoid duplication. This leaves us with 5,353,029 student-by-year observations. (5) We then
drop 4th grade students in the 2016–17 school year (77,035) because they have no prior-year
test score. This arises because Tennessee cancelled statewide testing in grades 3–8 for the
2015–16 school year. For students in grades 5–8, we use their twice-lagged test score as
the prior-year test score for 2016–17. (6) We then drop 46,556 observations with missing
demographic information. (7) Finally, we drop 4,105 observations in school-by-year cells
with fewer than 25 observations. This leaves us with a final analytic sample of 5,225,333
student-by-year observations for math.

For reading, we follow the same steps beginning from an initial sample of 7,359,843 million
observed student-year-exam observations. The reductions at each step are: (1) 557,551; (2)
809,475; (3) 15,567; (4) 1,591 (students in grade 8 or below taking an EOC English exam);
(5) 76,759; (6) 53,325; and (7) 3,991. This leaves us with a final analytic sample of 5,841,584
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student-by-year observations for reading. The larger sample size for reading is due to more
student taking an end-of-course exam in reading than math.

For attendance, we begin with 14,048,979 student-by-school-by-year observations. We
first restrict to students who attended a single school for at least 110 instructional days,
which drops 1,884,674 observations. We then drop students who are recorded as being
enrolled in two or more schools for at least 110 instructional days (276,541). We then drop
954,910 kindergarten students and 821,679 students in 2006–07 (no prior-year attendance).
Finally, we drop 114,891 students with missing demographics and 4,765 students in school-
by-year cells with fewer than 25 observations. This leaves us with a final analytic sample of
9,991,519 students for attendance.

Measures. The Tennessee data include information on the following student demo-
graphic characteristics: gender, race/ethnicity, parental income (as measured by eligibility
for free- or reduced-price lunch), special education status, and English learner status. We
include these and school averages of the same variables as covariates in our models that
residualize student test scores and attendance rates.

B.2 New York City

Data Construction and Sample Restrictions. The New York City data used in these
analyses emerge from yearly administrative datasets that contain, in separate files, principal,
teacher, and student records from the 1999 academic year to the 2017 academic year. Staff
(principals and teachers) and students are linked across these files by de-identified staff and
school identifiers and academic years – variables that appear across the respective datasets.
We drop student and staff records that are missing any of the relevant identifiers.

Students in our analytic sample must be in 3rd-8th grade and have Math and/or reading
test score outcomes. We require that students have complete demographic data, including
information on gender, race, English Learner status, Free and Reduced Price Lunch status,
and disability status. We eliminate those students who have math and reading test results
from different schools (13,094 observations) as well as duplicate records (1,692,116 observa-
tions). To be included in the analysis, student-by-year records should also contain current
and prior-year outcomes in the respective tested subject. As a result, we eliminate 780,129
student-by-year observations from the 1999 school year (the first year of data we have),
1,304,654 3rd grade observations in math (the first grade with test outcomes), and 1,249,658
3rd grade observation in reading. Finally, we drop 3,596 (math) and 4,328 (reading) students
in school-by-year cells with fewer than 25 observations. We are left with 6,194,478 student
observations in our math analytic sample and 5,976,223 student observations in our reading
sample.

Our sample includes only those schools that have one principal of record. Principals
in our analytic sample must also have continuous tenure. We eliminate those principal-by-
school spells that do not – i.e. those instances where a year (or more) of data is missing for
a school, but the same principal shows up before and after the break in data – losing 408
observations. Upon connecting the principal data with student data for students in tested
grades and subjects, and after imposing the aforementioned analytic data restrictions, we
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end up with 18,238 principal observations in our math analytic file and 18,240 principal
observations for our reading sample.

The teacher analytic sample is restricted to teachers who are labeled “paid, regular teach-
ers.” We also only include teachers who are rostered to students for purposes of calculating
value-added (i.e. students in tested grades and subjects after applying the aforementioned
restrictions).

Measures. The NYC data include information on the following student demographic
characteristics: gender, race/ethnicity, parental income (as measured by eligibility for free-
or reduced-price lunch), special education status, and English learner status. We include
these and school averages of the same variables as covariates in our models that residualize
student test scores.

B.3 Oregon

Data Construction and Sample Restrictions. We construct the Oregon data from three
separate data sources that describe (a) students’ demographic and school enrollment status;
(b) students’ test scores; and (c) all staff employed in the Oregon public school system.
We link principals and students through students’ attended school of record and principals’
assigned institutional organization. To appear in our sample, students must have attended
a school for at least 110 days in a given year and have a current-year outcome. We assign
students with missing prior-year tests a prior-year score of 0 and include an indicator for
missing prior score. A very small number of our observations have missing demographic
information with almost all of the missingness in the years prior to 2009–10 (between 0.05
percent and 2 percent of our observations have missing demographic information, depending
on the variable). We assign these observations values of 0 for that demographic variable and
create indicators for missing demographic information which we use in the residualization
process. All results are robust to excluding observations with missing demographics.

We restrict our test-score samples to grades 4–12 and our attendance sample to grades 1–
12, so that we can observe prior outcomes. We require principals to either be principal of only
a single school in a year or to have the highest FTE of any educator assigned as a principal to
that school in that year. This represents 96 percent of principal-year observations. Generally,
student mobility across schools and from outside the public school system has a substantial
effect on our sample, whereas the other restrictions are marginal.

After eliminating students’ secondary schools of attendance in a given year, students
recorded as having zero days present, and a very small number of students recorded as un-
der 4 or over 21 (813 student-year observations), we have samples of 3,140,724; 3,110,617
and 6,438,821 student-year observations in our math, reading and attendance sample, re-
spectively. We make the following additional restrictions in sequence in math: drop 90,111
observations from 2006–07 as we do not observe prior test scores, drop 170,841 student-year
observations with less than 110 days attendance (present or absent recorded) in a single
school; drop 5,312 student-year observations in school-by-year cells with fewer than 25 stu-
dents. This results in our final analytic math sample of 2,874,460 student-year observations.
We make the following additional restrictions in sequence in reading: drop 101,221 observa-
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tions from 2006–07 as we do not observe prior test scores, drop 173,781 student-year observa-
tions with less than 110 days attendance (present or absent recorded) in a single school; drop
5,281 student-year observations in school-by-year cells with fewer than 25 students. This re-
sults in our final analytic reading sample of 2,830,334 student-year observations. We make
the following additional restrictions in sequence in attendance: drop 482,381 observations
from 2006–07 as we do not observe prior test scores, drop 482,381 student-year observations
with less than 110 days attendance (present or absent recorded) in a single school; drop 1,454
student-year observations in school-by-year cells with fewer than 25 students. This results
in our final analytic attendance sample of 5,419,600 student-year observations.

These students are, in turn, linked with over 2,650 and 2,750 unique principals in our
test-score and attendance samples in Oregon, respectively.

Measures. The Oregon data include information on the following student demographic
characteristics: gender, race/ethnicity, parental income (as measured by eligibility for free-
or reduced-price lunch), special education status, limited English proficiency, 504 plan des-
ignation, and participation in migrant or Indian education programming. We also include
indicators for missing demographic variables. We include these and school averages of the
same variables as covariates in our models that residualize student test scores and attendance
rates.

Statewide teacher-student linkages are only possible in Oregon starting in the 2013–14
school year. Thus, our mechanism results that rely on teacher-value-added estimates draw
on only the final six years of our sample and only on teachers who teach math or reading.
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C Sorting Bias
Equation 6 demonstrates that σ2

Y (rSamePrin
x − rDiffPrin

x ) is a lower-bound estimate of the mag-
nitude of principal effects. This bias arises when schools tend to hire principals of similar
quality. A useful expression of the bias is as a proportion of the true SD of principal effects,
which we call relative bias:

Relative Bias ≡

√
σ2
δF

+ σδDx − σδFx −
√
σ2
δF

+ σδDx√
σ2
δF

+ σδDx

=

√
1− ρδ(

σ2
δF

σ2
δF

+ σδDx
)− 1 (11)

Equation 11 shows that, for a given true magnitude of principal effects, bias increases with
greater sorting and when principal effectiveness is more stable across years.
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Figure C.1: Sorting Bias
Notes: Left plot shows the estimated magnitude (student test score SD) of principal effects (δF ) as a function of the true
magnitude and the degree of positive sorting bias (ρδ), which is the intra-school correlation of δF . Here, we assume that
principal quality is perfectly stable. The right plot shows the relative bias defined by Equation 11 based on the sorting

parameter (ρδ) and the stability of principal quality (
σ2
δF

σ2
δF

+σ
δDx

). The relative bias shows in proportional terms the downward

bias of the lower-bound estimate relative to the true magnitude of principal effects.

Figure C.1 plots the magnitude of sorting bias across a range of scenarios. The left
panel shows the true magnitude (in SD terms) of principal effects based on the estimated
magnitude and the sorting parameter ρδ. Here, we assume that principal quality is perfectly
stable (

σ2
δF

σ2
δF

+σ
δDx

= 1), which is a conservative assumption (relaxing it will decrease the
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magnitude of bias). This panel illustrates how the downward bias scales with the true
magnitude of principal effects. Put another way, when the estimated magnitude of principal
effects is small, the bias (in absolute terms) is small. The right panel plots relative bias (the
downward bias expressed as a proportion of the true magnitude of principal effects) based
on

σ2
δF

σ2
δF

+σ
δDx

and ρδ. This panel establishes that bias decreases when principal quality is not
perfectly stable.

Table C.1: Estimates of ρδ Using Alternative Measures of Principal Qualifications and Ef-
fectiveness

Measure Nschools Nprin-by-school Sample Mean ICC (ρδ)

Panel A: Tennessee
Years of Principal Experience 1829 4027 1.17 .088
Years of Assistant Principal Experience 1946 5011 2.21 .046
Years of Experience (All Roles) 1851 4774 20.9 .044
Has Ph.D./Ed.D./Ed.S. Degree 1850 4781 .415 .106
Average Teacher Rating 1809 3591 -.058 .144
Average Teacher Rating (leave-out) 949 1318 -.100 .054
Average Supervisor Rating 1779 3545 -.102 .285
Average Supervisor Rating (leave-out) 944 1315 -.105 .216
Average Value-Added as Teacher 854 1136 .017 .171
Panel B: New York City
Years of Principal Experience 1912 5019 1.47 0
Years of Assistant Principal Experience 1588 3068 5.35 .023
Years of Experience (All Roles) 1925 5168 24.4 .09
Average Teacher Rating 1913 2493 -.012 .324
Average Value-Added as Teacher 771 940 .039 0
Panel C: Oregon
Ever Served as Assistant Principal 1332 3678 .344 .056
Years of Experience (All Roles) 1332 3678 18.9 .062
Has Ph.D./Ed.D. Degree 1332 3678 .045 .083
Does Not Have Master’s Degree 1332 3678 .050 .192

Notes: In each row, we estimate the school-level intraclass correlation (ICC) via a random effects variance decomposition model.
The ICC is calculated as the school-level variance component divided by the total variance. We also report information about
the sample for each measure, including the number of schools, the number of principal-by-school observations, and the sample
mean for the measure.

We can bound our estimated magnitude of principal effects under different assumptions
about sorting. While the true magnitude of sorting is unknown, we can provide sugges-
tive evidence by estimating ρδ for alternative measures of principal quality and observable
characteristics, such as experience. Table C.1 presents these estimates. Table C.2 computes
bias-corrected estimates of the magnitude of principal effects by applying Equation 11 to
our lower-bound estimates from Table 2 and 3. See Section 5.4.1 in the main text for a
discussion of these results.
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Table C.2: Bias-Corrected Estimates of the Standard Deviation of Principal Effects

ρδ

(
σ2
δF

σ2
δF

+σ
δDx

) 0.0 0.2 0.4 0.6

Panel A: Math
1.00 0.034 0.038 0.044 0.054
0.75 0.034 0.037 0.031 0.046
0.50 0.034 0.036 0.038 0.041

Panel B: Reading
1.00 0.011 0.012 0.014 0.017
0.75 0.011 0.012 0.013 0.015
0.50 0.011 0.012 0.012 0.013

Notes: This table shows bias corrected estimates of the magnitude of principal effects based on applying
Equation 11 to our baseline estimates from Tables 2 and 3. To obtain the baseline estimates (represented
here in the column where ρδ = 0), we compute the simple average of the pooled SD of principal effects across
each of the three contexts. This average is 0.034 SD in math and 0.011 SD in reading.
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D Examining Stationarity
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Figure D.1: Autocorrelation Vectors by Current Principal’s Tenure (Tennessee)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test scores generated from Equation 7 using residualization model
2. Each plot header denotes the subject (math or reading) and whether the pair of school-by-year observa-
tions have the same principal or a different principal. In addition to a line for all school-by-year observations
(i.e., the baseline results), we show lines for sub-samples defined by the years of tenure of the principal in
the school in year t. Table D.1 shows sample sizes for each of the cells.
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Table D.1: Sample Sizes for Figure D.1

Principal’s Tenure in Year t

All 0 1–2 3–5 6–10 11+

Panel A: Same Principal
1 year 11846 2146 3414 3042 2762 482
2 years 8429 1564 2458 2129 2006 272
3 years 6038 1140 1762 1518 1460 158
4 years 4670 900 1377 1152 1073 168
5 years 3181 604 953 766 766 92

Panel B: Different Principal
1 year 2460 267 688 721 658 126
2 years 4023 509 1154 1124 1075 161
3 years 4928 695 1447 1304 1341 141
4 years 5853 894 1693 1517 1520 229
5 years 5758 934 1612 1515 1504 193
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Figure D.2: Autocorrelation Vectors by Current Principal’s Tenure (New York City)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test scores generated from Equation 7 using residualization Model
2. Each plot header denotes the subject (math or reading) and whether the pair of school-by-year observa-
tions have the same principal or a different principal. In addition to a line for all school-by-year observations
(i.e., the baseline results), we show lines for sub-samples defined by the years of tenure of the principal in
the school in year t. Table D.2 shows sample sizes for each of the cells.
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Table D.2: Sample Sizes for Figure D.2

Principal’s Tenure in Year t
All 0 1–2 3–5 6–10 11–15 16+

Panel A: Same Principal
1 year 15145 2328 3974 4009 3552 994 288
2 years 12150 1991 3234 3278 2788 660 199
3 years 9641 1619 2645 2688 2115 432 142
4 years 7629 1319 2173 2215 1538 284 100
5 years 6034 1086 1805 1799 1068 203 73
Panel B: Different Principal
1 year 2056 273 407 546 532 216 82
2 years 3755 426 848 987 980 372 142
3 years 5013 617 1186 1295 1276 465 174
4 years 5830 764 1403 1530 1439 501 193
5 years 6253 861 1528 1690 1474 500 200
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Figure D.3: Autocorrelation Vectors by Current Principal’s Tenure (Oregon)

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of school-by-year mean residualized test scores generated from Equation 7 using residualization Model
2. Each plot header denotes the subject (math or reading) and whether the pair of school-by-year observa-
tions have the same principal or a different principal. In addition to a line for all school-by-year observations
(i.e., the baseline results), we show lines for sub-samples defined by the years of tenure of the principal in
the school in year t. Table D.3 shows sample sizes for each of the cells.
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Table D.3: Sample Sizes for Figure D.3

Principal’s Tenure in Year t

All 0 1–2 3–5 6+

Panel A: Same Principal
1 year 8066 1911 2435 1434 391
2 years 5543 1426 1676 910 208
3 years 3675 1003 1111 549 110
4 years 2374 692 714 324 45
5 years 1470 438 457 182 10

Panel B: Different Principal
1 year 2004 307 516 419 133
2 years 3374 556 878 666 180
3 years 4180 732 1102 735 164
4 years 4506 825 1180 719 114
5 years 4475 881 1128 635 46
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E Balance Checks and Matching Details
Tables E.1, E.2, and E.3 show the mean characteristics of school-by-year cells that comprise
the samples to estimate rsame

x and rdiffx , respectively, from Tables 2 and 3. See Section 5.4.3
for a description of these results.

To construct samples of rsame
x and rdiffx that are balanced on observables, we employ a

coarsened exact matching approach (Blackwell et al. 2009). Specifically, we define bins based
on the following school-by-year level variables: percentage of FRPL students, percentage of
white students, mean test score residuals using students’ most recent prior-school score
(when estimating the difference in correlations for math [reading], we use the prior-school
math [reading] residual). We do not include the test score variable for NYC because we
cannot directly observe student enrollment events. We chose these variables because they
were those where we observed imbalance in the unmatched comparisons. For each of these
four variables, we define five bins. For % FRPL and % white, we construct bins for 0–20,
20–40, 40–60, 60–80, 80–100%. For prior-school test score residuals, we use quintiles of the
observed distribution.

Because estimating rsame
x and rdiffx requires data from year t and year t + x, we include

the above measures for both year t and t + x. To implement the matching procedure, we
define a series of indicators that take a value of 1 if the school’s principal in year t is the
same as in year t + x, and 0 if the principal is different. For each value of x (up to 10
years), we obtain the set of matched “treatment” and “comparison” schools using the strata
defined by each combination of the coarsened (binned) variables. Any strata that contain
only treatment or comparison schools are effectively dropped (i.e., no common support).
The matching algorithm (via the “cem” package in Stata) yields a set of weights (separately
for each value of x) that we multiply by our precision weights (the combined sample size of
school-by-year cells in year t and t+x) to estimate rsame

x and rdiffx . Treatment and comparison
schools do not differ substantially, on average, in terms of the precision weights, meaning
that multiplying the matching weights by the precision weights still yields samples that are
observably similar.

Although OR was the only context where we observed substantial differences between
rsame
x and rdiffx schools, we implement the matching procedure in each context. The following
tables show the results. In each context, we show both the balance checks (to illustrate that
the matching approach was successful in yielding observably similar sets of schools) and the
estimates of rsame

x and rdiffx using the matched samples. Tables E.4, E.6, and E.8 show the
balance results. For ease of comparison, Tables E.5, E.7, and E.9 show both the baseline
(unmatched) and matched results for rsame

x and rdiffx , along with the cell sizes. The smaller
cell sizes in the matched samples reflect the common support restriction.

Tables E.4, E.6, E.8 demonstrate that our matching approach was successful in reducing
observable differences across rsame

x and rdiffx samples. In OR, where we observed increasing
imbalance with x in the baseline results, Table E.8 shows that rsame

x and rdiffx matched samples
are now observably similar for all x. Table E.9 shows that the increasing estimated magnitude
of principal effects in OR based on rsame

x − rdiffx does not hold using the matched samples.
The magnitude is similar to the baseline results for smaller values of x (where the samples
were observably similar even in the baseline results), but is attenuated for larger values of
x. For the largest x (i.e., 8 years or more), we actually estimate a negative difference in
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correlations (as opposed to a relatively large positive difference in the baseline results), but
our precision is quite low. Overall, we interpret these results as suggestive evidence that the
larger estimates of the magnitude of principal effects in OR are a function of both sample
selection (i.e., an increasingly idiosyncratic set of schools that keep their principal for a long
period) and imprecision.

In TN and NYC, the rsame
x −rdiffx results are very similar between the baseline and matched

sample results, which is perhaps unsurprising given that the baseline samples were quite
similar on observables.
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Table E.1: Mean School Characteristics by Same vs. Different Principal Pairs (Tennessee)

Prior Math Prior Read Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
1 year -0.060 -0.071 -0.040 -0.058 0.947 0.945 0.684 0.646 0.476 0.507 9.178 8.889 12.104 11.860 -0.007 -0.007
2 years -0.052 -0.064 -0.030 -0.052 0.948 0.946 0.689 0.655 0.483 0.511 9.329 9.084 12.197 11.858 -0.007 -0.009
3 years -0.049 -0.060 -0.023 -0.045 0.948 0.945 0.694 0.659 0.481 0.509 9.456 9.227 12.310 11.895 -0.007 -0.009
4 years -0.054 -0.067 -0.024 -0.045 0.949 0.946 0.698 0.661 0.470 0.499 9.433 9.228 12.407 11.953 -0.007 -0.008
5 years -0.057 -0.066 -0.021 -0.041 0.949 0.946 0.703 0.663 0.463 0.490 9.564 9.394 12.535 11.994 -0.008 -0.009
6 years -0.050 -0.065 -0.013 -0.036 0.949 0.946 0.705 0.664 0.449 0.480 9.709 9.477 12.636 12.042 -0.008 -0.010
7 years -0.044 -0.063 -0.005 -0.034 0.950 0.946 0.708 0.663 0.431 0.465 9.986 9.569 12.673 12.043 -0.009 -0.011
8 years -0.037 -0.057 -0.005 -0.031 0.950 0.945 0.711 0.662 0.406 0.441 10.124 9.763 12.694 12.040 -0.006 -0.012
9 years -0.064 -0.064 -0.022 -0.033 0.951 0.944 0.717 0.662 0.367 0.411 10.152 10.120 12.700 11.988 -0.003 -0.013
10 years -0.079 -0.070 -0.033 -0.036 0.952 0.946 0.718 0.662 0.361 0.397 9.659 9.741 12.610 11.925 0.001 -0.011

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).
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Table E.2: Mean School Characteristics by Same vs. Different Principal Pairs (New York City)

Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
1 year 92.200 91.398 15.314 13.817 0.822 0.809 9.192 9.404 10.794 10.650 -0.016 -0.020
2 years 92.445 91.618 15.551 14.004 0.826 0.809 9.157 9.273 10.799 10.570 -0.015 -0.019
3 years 92.634 91.846 15.773 14.422 0.829 0.809 9.108 9.231 10.860 10.582 -0.013 -0.018
4 years 92.852 92.074 15.967 14.787 0.833 0.810 9.060 9.162 10.962 10.659 -0.013 -0.017
5 years 93.026 92.254 15.946 15.230 0.844 0.817 9.042 9.071 11.099 10.754 -0.012 -0.016
6 years 93.175 92.423 16.029 15.531 0.859 0.837 9.044 8.998 11.269 10.915 -0.012 -0.015
7 years 93.312 92.583 16.298 15.697 0.860 0.840 9.092 8.957 11.451 11.110 -0.012 -0.015
8 years 93.443 92.789 16.423 15.946 0.863 0.848 9.172 8.961 11.616 11.320 -0.011 -0.014
9 years 93.587 93.013 16.799 16.073 0.869 0.860 9.258 9.006 11.746 11.535 -0.010 -0.014
10 years 93.728 93.202 17.202 16.200 0.874 0.866 9.333 9.087 11.870 11.748 -0.009 -0.014

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).
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Table E.3: Mean School Characteristics by Same vs. Different Principal Pairs (Oregon)

Prior Math Prior Read Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
1 year -0.012 -0.019 -0.006 -0.007 0.944 0.943 0.645 0.641 0.511 0.519 7.915 8.087 12.446 12.238 -0.013 -0.014
2 years -0.010 -0.020 -0.005 -0.009 0.945 0.944 0.642 0.632 0.520 0.532 7.890 8.163 12.539 12.343 -0.013 -0.017
3 years -0.004 -0.019 -0.003 -0.006 0.945 0.944 0.640 0.625 0.524 0.542 7.865 8.168 12.611 12.434 -0.009 -0.019
4 years 0.010 -0.024 0.006 -0.011 0.946 0.944 0.639 0.619 0.518 0.549 7.730 8.180 12.644 12.429 -0.011 -0.014
5 years 0.022 -0.025 0.012 -0.012 0.947 0.945 0.636 0.616 0.516 0.556 7.834 7.989 12.615 12.404 -0.011 -0.012
6 years 0.048 -0.022 0.024 -0.009 0.947 0.945 0.632 0.614 0.511 0.558 7.924 7.862 12.591 12.305
7 years 0.060 -0.019 0.023 -0.007 0.947 0.945 0.632 0.610 0.503 0.563 7.928 7.698 12.488 12.141
8 years 0.084 -0.017 0.031 -0.007 0.948 0.945 0.628 0.607 0.491 0.570 7.568 7.405 12.417 12.024
9 years 0.093 -0.017 0.041 -0.008 0.948 0.944 0.626 0.604 0.458 0.574 7.449 7.367 12.396 12.001
10 years 0.089 -0.016 0.050 -0.006 0.947 0.943 0.623 0.601 0.429 0.573 7.899 7.337 12.425 11.989

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).
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Table E.4: Mean School Characteristics by Same vs. Different Principal Pairs (Tennessee, Matched Sample)

Prior Math Prior Read Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
Panel A: Matched Sample for Math
1 year -0.071 -0.066 -0.051 -0.050 0.948 0.946 0.690 0.694 0.486 0.484 9.175 8.989 12.108 12.060 -0.007 -0.008
2 years -0.064 -0.064 -0.042 -0.048 0.948 0.947 0.695 0.700 0.497 0.500 9.268 9.066 12.131 11.944 -0.007 -0.009
3 years -0.065 -0.063 -0.039 -0.040 0.948 0.946 0.698 0.701 0.492 0.491 9.348 9.204 12.170 11.860 -0.006 -0.009
4 years -0.066 -0.067 -0.032 -0.034 0.949 0.948 0.697 0.704 0.473 0.470 9.253 9.182 12.128 11.775 -0.007 -0.008
5 years -0.066 -0.070 -0.027 -0.032 0.949 0.947 0.699 0.701 0.461 0.463 9.280 9.182 12.173 11.716 -0.007 -0.009
6 years -0.063 -0.070 -0.021 -0.025 0.950 0.948 0.700 0.701 0.443 0.445 9.407 9.216 12.182 11.739 -0.008 -0.008
7 years -0.059 -0.055 -0.015 -0.010 0.950 0.949 0.705 0.702 0.415 0.415 9.644 9.429 12.167 11.713 -0.008 -0.008
8 years -0.063 -0.076 -0.024 -0.031 0.950 0.948 0.715 0.710 0.381 0.390 9.699 9.178 12.227 11.758 -0.007 -0.011
9 years -0.090 -0.080 -0.041 -0.036 0.952 0.949 0.722 0.705 0.374 0.379 8.874 9.100 12.456 11.819 -0.003 -0.010
10 years -0.109 -0.086 -0.059 -0.033 0.954 0.950 0.733 0.720 0.315 0.315 8.692 9.025 12.582 11.918 0.001 -0.012

Panel B: Matched Sample for Reading
1 year -0.053 -0.062 -0.036 -0.047 0.947 0.945 0.690 0.696 0.480 0.480 9.644 9.467 12.124 12.061 -0.008 -0.008
2 years -0.046 -0.055 -0.027 -0.041 0.947 0.945 0.694 0.700 0.491 0.494 9.751 9.599 12.136 11.969 -0.008 -0.011
3 years -0.045 -0.055 -0.022 -0.035 0.947 0.945 0.697 0.704 0.485 0.487 9.838 9.665 12.171 11.884 -0.008 -0.010
4 years -0.048 -0.061 -0.019 -0.030 0.948 0.947 0.700 0.711 0.465 0.468 9.714 9.451 12.144 11.812 -0.009 -0.010
5 years -0.057 -0.066 -0.023 -0.035 0.948 0.946 0.704 0.709 0.458 0.463 9.760 9.590 12.135 11.739 -0.009 -0.011
6 years -0.045 -0.065 -0.007 -0.029 0.949 0.947 0.703 0.697 0.437 0.448 9.880 9.603 12.134 11.713 -0.009 -0.010
7 years -0.042 -0.063 -0.001 -0.027 0.950 0.947 0.706 0.697 0.412 0.426 10.069 9.694 12.128 11.683 -0.008 -0.010
8 years -0.042 -0.066 -0.007 -0.029 0.950 0.947 0.712 0.709 0.376 0.386 10.129 9.606 12.200 11.809 -0.007 -0.013
9 years -0.074 -0.085 -0.026 -0.042 0.951 0.948 0.724 0.712 0.367 0.377 9.277 9.273 12.449 11.843 -0.003 -0.010
10 years -0.087 -0.085 -0.040 -0.037 0.953 0.950 0.729 0.725 0.309 0.316 9.015 8.924 12.513 11.943 0.001 -0.011

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).

87



Table E.5: Differences in Autocorrelations Before and After Matching (Tennessee)

Baseline Matched Sample

x N same
x Ndiff

x rsame
x rdiffx diffx SDx N same

x Ndiff
x rsame

x rdiffx diffx SDx

Panel A: Math
1 year 11846 2460 0.605 0.569 0.036 0.035 10754 2223 0.609 0.578 0.031 0.032
2 years 8429 4023 0.494 0.459 0.034 0.034 7761 3691 0.487 0.473 0.015 0.022
3 years 6038 4928 0.425 0.386 0.040 0.036 5584 4506 0.424 0.397 0.027 0.030
4 years 4670 5853 0.350 0.338 0.012 0.020 4308 5319 0.354 0.344 0.009 0.018
5 years 3181 5758 0.301 0.313 -0.012 0.000 2929 5130 0.306 0.325 -0.019 0.000
6 years 2125 5254 0.272 0.244 0.028 0.030 1942 4503 0.272 0.256 0.015 0.022
7 years 1312 4545 0.193 0.189 0.004 0.012 1183 3643 0.209 0.212 -0.003 0.000
8 years 786 3589 0.229 0.157 0.072 0.049 700 2887 0.232 0.192 0.041 0.037
9 years 599 3416 0.230 0.185 0.045 0.039 522 2666 0.253 0.207 0.046 0.039
10 years 340 2426 0.331 0.143 0.188 0.079 288 1783 0.332 0.164 0.168 0.075

Pooled SD Estimate 0.032 0.026

Panel B: Reading
1 year 11880 2468 0.640 0.637 0.004 0.008 11114 2254 0.633 0.633 0.000 0.001
2 years 8457 4038 0.644 0.622 0.021 0.019 7990 3739 0.640 0.634 0.006 0.010
3 years 6056 4947 0.611 0.589 0.022 0.020 5718 4601 0.605 0.596 0.009 0.013
4 years 4685 5875 0.595 0.579 0.016 0.017 4324 5310 0.596 0.585 0.011 0.014
5 years 3189 5775 0.578 0.571 0.007 0.011 2916 5180 0.564 0.577 -0.014 0.000
6 years 2131 5272 0.551 0.550 0.001 0.003 1970 4660 0.551 0.554 -0.004 0.000
7 years 1313 4565 0.542 0.521 0.021 0.019 1220 3910 0.537 0.533 0.004 0.008
8 years 785 3599 0.494 0.481 0.013 0.015 707 2907 0.473 0.496 -0.023 0.000
9 years 598 3420 0.533 0.508 0.026 0.021 525 2683 0.532 0.505 0.027 0.022
10 years 339 2426 0.547 0.444 0.103 0.043 288 1678 0.550 0.487 0.063 0.033

Pooled SD Estimate 0.016 0.008
Notes: Table reports original autocorrelation results from Tables 2 and 3 alongside same analysis performed on the matched sample. Samples differ in baseline
and matched sample due to lack of common support in particular strata. See Section E for details on matching process and table notes in Table 2 for additional
information.
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Table E.6: Mean School Characteristics by Same vs. Different Principal Pairs (New York City, Matched Sample)

Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
Panel A: Matched Sample for Math
1 year 0.922 0.915 0.143 0.133 0.831 0.828 9.072 9.234 10.702 10.549 -0.015 -0.020
2 years 0.924 0.917 0.148 0.139 0.832 0.826 8.993 9.062 10.781 10.603 -0.014 -0.020
3 years 0.927 0.919 0.150 0.139 0.836 0.832 8.886 8.935 10.920 10.657 -0.013 -0.019
4 years 0.928 0.921 0.151 0.142 0.845 0.838 8.852 8.830 11.071 10.763 -0.013 -0.017
5 years 0.930 0.922 0.151 0.142 0.863 0.856 8.822 8.747 11.267 10.920 -0.013 -0.016
6 years 0.931 0.923 0.153 0.145 0.865 0.860 8.830 8.652 11.484 11.120 -0.012 -0.015
7 years 0.932 0.925 0.155 0.146 0.869 0.867 8.859 8.624 11.671 11.358 -0.012 -0.015
8 years 0.934 0.928 0.154 0.145 0.877 0.877 8.878 8.678 11.829 11.586 -0.011 -0.013
9 years 0.935 0.930 0.158 0.146 0.881 0.880 8.960 8.694 11.984 11.813 -0.010 -0.014
10 years 0.936 0.931 0.161 0.146 0.889 0.887 9.002 8.793 12.100 12.001 -0.009 -0.013

Panel B: Matched Sample for Reading
1 year 0.923 0.915 0.145 0.136 0.831 0.827 9.012 9.130 10.715 10.566 -0.015 -0.020
2 years 0.925 0.917 0.150 0.142 0.832 0.825 8.936 8.975 10.795 10.628 -0.014 -0.020
3 years 0.927 0.919 0.152 0.142 0.835 0.831 8.857 8.875 10.937 10.683 -0.013 -0.018
4 years 0.929 0.921 0.153 0.145 0.844 0.837 8.833 8.784 11.084 10.786 -0.013 -0.017
5 years 0.930 0.922 0.154 0.144 0.861 0.855 8.810 8.712 11.276 10.940 -0.013 -0.016
6 years 0.931 0.924 0.155 0.147 0.863 0.859 8.823 8.625 11.486 11.132 -0.012 -0.015
7 years 0.933 0.926 0.157 0.149 0.868 0.866 8.851 8.608 11.667 11.362 -0.012 -0.015
8 years 0.934 0.928 0.157 0.147 0.875 0.874 8.871 8.666 11.822 11.583 -0.012 -0.013
9 years 0.935 0.930 0.161 0.149 0.880 0.878 8.941 8.682 11.977 11.804 -0.010 -0.013
10 years 0.936 0.932 0.165 0.150 0.887 0.884 8.971 8.795 12.097 11.993 -0.009 -0.013

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).
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Table E.7: Differences in Autocorrelations Before and After Matching (New York City)

Baseline Matched Sample

x N same
x Ndiff

x rsame
x rdiffx diffx SDx N same

x Ndiff
x rsame

x rdiffx diffx SDx

Panel A: Math
1 year 14848 2015 0.651 0.605 0.046 0.030 14762 2046 0.650 0.597 0.053 0.032
2 years 11900 3693 0.609 0.567 0.042 0.029 11965 3729 0.607 0.567 0.040 0.028
3 years 9437 4924 0.543 0.519 0.024 0.022 9536 4974 0.538 0.518 0.019 0.019
4 years 7462 5728 0.509 0.482 0.027 0.023 7535 5753 0.505 0.479 0.026 0.022
5 years 5897 6136 0.471 0.456 0.014 0.017 5957 6147 0.464 0.449 0.014 0.017
6 years 4629 6278 0.436 0.430 0.006 0.011 4682 6257 0.428 0.426 0.002 0.007
7 years 3597 6201 0.410 0.410 -0.001 0.000 3647 6155 0.409 0.401 0.008 0.012
8 years 2745 5974 0.371 0.384 -0.013 0.000 2776 5901 0.374 0.379 -0.005 0.000
9 years 2019 5656 0.346 0.358 -0.011 0.000 2052 5551 0.350 0.361 -0.011 0.000
10 years 1428 5233 0.333 0.339 -0.006 0.000 1452 5104 0.333 0.336 -0.002 0.000

Pooled SD Estimate 0.022 0.023

Panel B: Reading
1 year 14832 2017 0.608 0.638 -0.030 0.000 14797 2059 0.603 0.636 -0.033 0.000
2 years 11883 3693 0.591 0.599 -0.008 0.000 11963 3734 0.586 0.598 -0.012 0.000
3 years 9422 4926 0.535 0.558 -0.024 0.000 9535 4982 0.528 0.554 -0.027 0.000
4 years 7450 5728 0.513 0.520 -0.007 0.000 7535 5760 0.505 0.511 -0.006 0.000
5 years 5888 6132 0.482 0.505 -0.023 0.000 5954 6146 0.476 0.491 -0.014 0.000
6 years 4623 6272 0.460 0.480 -0.020 0.000 4678 6261 0.453 0.476 -0.023 0.000
7 years 3591 6195 0.444 0.467 -0.023 0.000 3644 6157 0.442 0.455 -0.013 0.000
8 years 2741 5966 0.440 0.471 -0.031 0.000 2774 5904 0.434 0.465 -0.031 0.000
9 years 2016 5650 0.417 0.458 -0.041 0.000 2052 5552 0.412 0.460 -0.048 0.000
10 years 1426 5226 0.413 0.453 -0.039 0.000 1453 5104 0.404 0.446 -0.042 0.000

Pooled SD Estimate 0.000 0.000
Notes: Table reports original autocorrelation results from Tables 2 and 3 alongside same analysis performed on the matched sample. Samples differ in baseline
and matched sample due to lack of common support in particular strata. See Section E for details on matching process and table notes in Table 2 for additional
information.
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Table E.8: Mean School Characteristics by Same vs. Different Principal Pairs (Oregon, Matched Sample)

Prior Math Prior Read Attend Rate White Stu FRPL Stu Enroll Tch Exp Tch VA

x samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx samex diffx
Panel A: Matched Sample for Math
1 year -0.012 -0.013 -0.004 -0.003 0.945 0.943 0.643 0.646 0.516 0.518 8.088 8.306 12.513 12.451 -0.015 -0.014
2 years -0.014 -0.015 -0.008 -0.006 0.945 0.944 0.638 0.638 0.528 0.530 8.013 8.363 12.602 12.509 -0.014 -0.018
3 years -0.008 -0.009 -0.005 0.002 0.945 0.944 0.634 0.635 0.528 0.530 7.997 8.389 12.595 12.479 -0.010 -0.019
4 years -0.005 -0.009 -0.004 0.003 0.946 0.944 0.636 0.635 0.524 0.530 7.915 8.374 12.618 12.468 -0.014 -0.014
5 years -0.005 -0.011 0.000 0.002 0.945 0.944 0.634 0.637 0.526 0.528 7.978 8.259 12.490 12.411 -0.017 -0.015
6 years 0.007 -0.006 0.000 0.002 0.945 0.944 0.633 0.636 0.531 0.528 8.080 8.373 12.464 12.194
7 years 0.005 0.012 -0.014 0.009 0.945 0.944 0.633 0.641 0.529 0.518 7.952 7.955 12.299 12.200
8 years 0.008 0.019 -0.026 0.010 0.945 0.943 0.633 0.640 0.515 0.518 7.797 7.632 12.287 12.193
9 years 0.020 0.047 -0.013 0.043 0.946 0.944 0.638 0.637 0.474 0.491 7.365 7.372 12.446 12.142
10 years 0.035 0.021 0.017 0.002 0.944 0.942 0.618 0.618 0.457 0.489 7.866 7.926 12.406 12.239

Panel B: Matched Sample for Reading
1 year -0.018 -0.021 -0.008 -0.006 0.945 0.943 0.643 0.644 0.523 0.526 7.897 8.262 12.506 12.388 -0.014 -0.012
2 years -0.020 -0.015 -0.010 -0.002 0.945 0.944 0.637 0.638 0.534 0.534 7.848 8.181 12.579 12.512 -0.014 -0.017
3 years -0.023 -0.016 -0.015 -0.002 0.945 0.944 0.635 0.636 0.536 0.536 7.841 8.358 12.581 12.497 -0.010 -0.020
4 years -0.011 -0.012 -0.006 0.003 0.946 0.944 0.637 0.635 0.529 0.534 7.784 8.262 12.592 12.436 -0.013 -0.015
5 years -0.003 -0.007 0.000 0.009 0.946 0.945 0.634 0.637 0.528 0.529 7.816 8.020 12.497 12.398 -0.015 -0.015
6 years 0.010 -0.014 0.001 -0.000 0.945 0.944 0.635 0.635 0.532 0.534 7.892 8.219 12.416 12.251
7 years 0.005 -0.013 -0.018 -0.004 0.945 0.944 0.628 0.635 0.530 0.525 7.783 7.679 12.266 12.139
8 years 0.015 -0.004 -0.016 -0.011 0.945 0.944 0.632 0.634 0.510 0.524 7.553 7.340 12.284 12.142
9 years 0.040 0.038 0.011 0.029 0.946 0.944 0.643 0.637 0.462 0.487 7.168 7.338 12.413 12.363
10 years 0.039 0.034 0.039 0.031 0.945 0.943 0.623 0.626 0.443 0.468 7.610 7.468 12.344 12.452

Notes: Table reports precision-weighted means of school characteristics based on the school-by-year samples that contribute to the estimates of rsame and rdiff in
Table 2. Prior Math and Prior Read are school-by-year mean test score residuals (via residualization Model 1) using each student’s most recent prior-year test
score in a different school. Attend Rate is the school-by-year mean attendance rate. White Stu and FRPL Stu are the school-by-year proportion of White and
free/reduced-price lunch eligible students, respectively. Enroll is the number of students enrolled in the school divided by 100. Tch Exp is the school-by-year mean
years of experience of the teaching staff. Tch VA is the school-by-year mean of drift-adjusted, leave-current-school-out value-added. To obtain the mean for a specific
cell, we first obtain the precision-weighted mean of the school-by-year means for the current year and future year (e.g., diff = 3 years includes year t and year t+ 3)
among pairs of school-by-year cells that are included in the calculations of rsame and rdiff, respectively, where the weights are those used to calculate rsame and rdiff.
We then take the simple average of those two means (i.e., (x̄t + x̄t+3)/2).
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Table E.9: Differences in Autocorrelations Before and After Matching (Oregon)

Baseline Matched Sample

x N same
x Ndiff

x rsame
x rdiffx diffx SDx N same

x Ndiff
x rsame

x rdiffx diffx SDx

Panel A: Math
1 year 8066 2004 0.681 0.640 0.041 0.041 7066 1828 0.673 0.637 0.036 0.038
2 years 5543 3374 0.635 0.603 0.032 0.036 4918 3027 0.618 0.605 0.013 0.023
3 years 3675 4180 0.601 0.557 0.044 0.042 3293 3674 0.575 0.557 0.018 0.027
4 years 2374 4506 0.619 0.541 0.077 0.056 2117 3717 0.586 0.581 0.005 0.014
5 years 1470 4475 0.643 0.527 0.116 0.068 1324 3483 0.578 0.555 0.023 0.030
6 years 894 4162 0.647 0.522 0.125 0.071 784 2923 0.571 0.559 0.012 0.022
7 years 534 3678 0.653 0.482 0.170 0.082 455 2239 0.568 0.577 -0.009 0.000
8 years 303 3040 0.675 0.518 0.157 0.079 252 1604 0.571 0.609 -0.038 0.000
9 years 171 2320 0.676 0.514 0.162 0.080 137 872 0.538 0.638 -0.100 0.000
10 years 86 1559 0.573 0.518 0.055 0.047 65 474 0.412 0.645 -0.233 0.000

Pooled SD Estimate 0.048 0.027

Panel B: Reading
1 year 8065 2006 0.672 0.659 0.013 0.023 7239 1836 0.668 0.662 0.006 0.015
2 years 5544 3375 0.628 0.625 0.003 0.010 5030 3045 0.623 0.614 0.008 0.018
3 years 3676 4179 0.605 0.599 0.006 0.015 3327 3653 0.593 0.585 0.009 0.018
4 years 2374 4503 0.584 0.583 0.002 0.008 2123 3752 0.572 0.570 0.002 0.010
5 years 1469 4473 0.568 0.544 0.024 0.031 1340 3632 0.558 0.559 -0.002 0.000
6 years 893 4161 0.565 0.531 0.034 0.037 781 2981 0.561 0.542 0.019 0.027
7 years 535 3682 0.567 0.516 0.051 0.045 452 2239 0.552 0.567 -0.015 0.000
8 years 303 3041 0.567 0.514 0.053 0.046 256 1548 0.563 0.537 0.026 0.032
9 years 171 2320 0.505 0.503 0.002 0.010 136 864 0.439 0.562 -0.123 0.000
10 years 86 1560 0.486 0.490 -0.004 0.000 67 496 0.424 0.573 -0.148 0.000

Pooled SD Estimate 0.018 0.013
Notes: Table reports original autocorrelation results from Tables 2 and 3 alongside same analysis performed on the matched sample. Samples differ in baseline
and matched sample due to lack of common support in particular strata. See Section E for details on matching process and table notes in Table 2 for additional
information.
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F Analyzing School-Switching Principals
Our primary decomposition analyses examine differences between principals who worked in
the same school but do not examine the stability of school performance across schools led
by the same principal. The primary analyses suggest that most of the between-principal
variation in school performance likely reflects factors other than principal performance. One
way to further check this result is to leverage principals whom we observe leading multiple
schools. Here, our aim is to compare the stability of school performance within principals
for years when they worked in the same school versus a different school. In particular, we
are interested in the different school correlations. Drawing on the framework in Equation 2,
this correlation is:

rDiffSch
x =

σ2
δF + σδDx + σµFx

σ2
Y

where σµFx = cov(µFj(p,t), µ
F
k(p,t+x)) < σ2

µF (12)

Given our baseline results, which suggest that σ2
δF + σδDx is small, we expect that rDiffSch

x will
be small in magnitude. As with rDiffPrin

x in Equation 4, however, part of rDiffSch
x reflects the

possibility of principal sorting. If principals tend to transfer to schools that are similar in
terms of fixed factors µF that affect student test score performance, σµFx will be positive and
rDiffSch
x will increase.33

Figure F.1 plots rSameSch
x (which is the same as rSamePrin

x from the main results) and
rDiffSch
x . Consistent with our expectations, rDiffSch

x is small in magnitude and substantially
smaller than rSameSch

x , hovering around only 0.2. Still, could this small correlation across dif-
ferent schools—which is relatively stable over time—suggest a small contribution of principal
effectiveness to school performance? This is unlikely—if σ2

δF > 0, we should have seen greater
separation between rSamePrin

x and rDiffPrin
x in Figure 2. Instead, this correlation likely reflects

sorting via σµFx . To show this, we can estimate rDiffSch
x for our teacher and student compo-

sition measures. As demonstrated by Appendix Figures F.2 and F.3, we observe positive
correlations of roughly the same magnitude, reinforcing that the small amount of stability
in school performance observed within principals across different schools is not indicative
of principals’ effects on student outcomes, but rather of principals sorting to similar school
environments. Notably, the within-principal, between-school correlation is roughly 0.2 in all
contexts and subjects, which is similar to the suggested magnitude of principal sorting from
Table C.1.

33. As with teachers, the principal labor market tends to be highly localized. Prior work in Tennessee,
for instance, finds that nearly all transferring principals remain in the same district (Grissom and Bartanen
2019a).
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Figure F.1: Autocorrelations Within and Between Schools

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of principal-by-year mean residualized test score generated from Equation 7. Correlations are between
year t and t + x for the same principal, where x is denoted by the x-axis value. Same same denotes the
sub-sample of principal-by-year pairs where the school is the same in both years. Different school denotes
the sub-sample where the school in year t is different than year t + x. Residualization models adjust for
student demographic characteristics and cubic polynomials of lagged-test scores and attendance (Model 2).
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Figure F.2: Principal Autocorrelation Vectors for Teacher Composition

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted correla-
tions of principal-by-year mean teacher experience and value-added (pooling math and reading teachers).
Correlations are between year t and t+x for the same principal, where x is denoted by the x-axis value. Same
school denotes the sub-sample of principal-by-year pairs where the school is the same in both years. Different
school denotes the sub-sample where the school in year t is different than year t+x. For teacher experience,
principal-by-year cells are weighted by the number of teachers in the school. For VA, principal-by-year cells
are weighted by the number of teachers with a VA estimate.
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Figure F.3: Principal Autocorrelation Vectors for Student Composition

Notes: Figures report autocorrelation “drift” vectors generated from sample-size-precision-weighted corre-
lations of principal-by-year prior-school outcomes for both new-to-school and all students generated from
Equation 7. Correlations are between year t and t+x for the same principal, where x is denoted by the x-axis
value. Same school denotes the sub-sample of principal-by-year pairs where the school is the same in both
years. Different school denotes the sub-sample where the school in year t is different than year t + x. OR
results exclude HS students as very few new-to-school students have a prior-school and a current-year score
because only a small number of 9th-grade students appear in our sample prior to 2014 and none afterwards.
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G Variance Decomposition with Autocorrelated Errors
Our primary analyses demonstrate that the between-principal variance component estimated
in Table 1 largely reflects variation in school performance caused by factors outside of princi-
pals’ control. Because these factors are partially persistent, they are not addressed through
typical shrinkage approaches, such as Empirical Bayes’s. Here, we demonstrate how a shrink-
age approach that allows for autocorrelation in the school-by-year error term reaches a similar
conclusion as our decomposition results based on rsame − rdiff.

The baseline models in Table 1 assume that the residuals (school-by-year cells nested
within principals) are independent and identically distributed—an assumption that is clearly
violated based on the patterns in Figure 2. This violation leads to a bias in the magnitude
of the estimated variance components. In particular, the principal variance component is
biased upwards. Because the typical principal remains in a school for a short period (2–5
years), year-to-year fluctuations that are unrelated to principal effectiveness constitute a non-
trivial portion of the principal’s estimated effect. By directly estimating the error variance,
the mixed model adjusts for yearly fluctuations and avoids inflating the principal variance
component. In the case of positive autocorrelation, however, the adjustment is insufficient
and the principal variance component remains inflated.

To illustrate how we can address this bias, we re-estimate our variance components models
with an autoregressive error structure, where the correlation is an additional parameter to
be estimated along with the random effect variances. In particular, if we assume the error
term in Equation 8 (εspt) follows a second-order autoregressive structure:

εspt = ρ1εsp,t−1 + ρ2εsp,t−2 + νspt

where νspt ∼ N(0, σ2)
(13)

then, we can re-write Equation 8 with the composite error term:

Ȳ ∗
spt = θs + θs,p + [ρ1εsp,t−1 + ρ2εsp,t−2 + νspt] (14)

where we directly estimate the AR(2) terms ρ1 and ρ2 along with the school, principal,
and residual variance components. Note that we estimate an AR(2) model because we found
that it fit better than an AR(1) model. Correctly modeling the positive autocorrelation
structure will increase the estimated variance component of the residual and shrink the
principal variance component, producing a more accurate estimate of the magnitude of
principals’ effects.

Once we appropriately model the semi-persistent ebbs and flows in school performance—
variation that should not be attributed to principal effects—our estimates of the magnitude
of principal effects on student test scores and attendance are, in essence, zero. We show
results from AR(2) models in Table G.1. We find that while the estimated school-level vari-
ance components are essentially unchanged relative to Table 1, the principal-level variance
components are effectively zero. The AR(2) parameters confirm substantial positive autocor-
relation in the residuals, which created the illusion of persistent between-principal variation
in Table 1.
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Table G.1: Variance Decomposition Results with Autocorrelated Errors (Math)

Model 0 Model 1 Model 2 Model 3 Model 4

Panel A: Tennessee
Random Effects Parameters (SD)

School 0.411 0.297 0.128 0.175 0.162
Principal 0.000 0.000 0.000 0.000 0.000
Residual 0.216 0.213 0.179 0.194 0.188

AR(2) Parameters

Correlation (t− 1) 0.567 0.581 0.365 0.431 0.520
Correlation (t− 2) 0.045 0.045 0.119 0.087 0.097

Panel B: New York City
Random Effects Parameters (SD)

School 0.499 0.235 0.114
Principal 0.000 0.000 0.015
Residual 0.222 0.186 0.126

AR(2) Parameters

Correlation (t− 1) 0.744 0.667 0.273
Correlation (t− 2) 0.062 0.079 0.194

Panel C: Oregon
Random Effects Parameters (SD)

School 0.362 0.321 0.170 0.243 0.264
Principal 0.000 0.000 0.035 0.000 0.000
Residual 0.183 0.177 0.152 0.176 0.158

AR(2) Parameters

Correlation (t− 1) 0.572 0.575 0.248 0.423 0.527
Correlation (t− 2) 0.036 0.039 0.098 0.092 0.015

Notes: Cells report standard deviations of variance components and percentage of overall variance explained from Equation
14. Model 0 uses raw test scores, Model 1 adjusts for student demographic characteristics, Model 2 adds cubic polynomials
of lagged-test scores and attendance, Model 3 restricts to students in first year in school, Model 4 uses prior-school outcomes.
Models 3 and 4 not estimated for NYC because we do not observe year of first enrollment. All models include grade and
year fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity, disability status, 504 plan
designation, participation in migrant or Indian education program and the school averages of the preceding characteristics. All
samples restricted to observations with at least 25 students in each school-by-year cell.
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Table G.2: Variance Decomposition Results with Autocorrelated Errors (Reading)

Model 0 Model 1 Model 2 Model 3 Model 4

Panel A: Tennessee
Random Effects Parameters (SD)

School 0.429 0.293 0.119 0.168 0.143
Principal 0.000 0.000 0.020 0.000 0.000
Residual 0.148 0.140 0.106 0.125 0.115

AR(2) Parameters

Correlation (t− 1) 0.528 0.524 0.179 0.267 0.435
Correlation (t− 2) 0.076 0.076 0.136 0.111 0.120

Panel B: New York City
Random Effects Parameters (SD)

School 0.486 0.239 0.110
Principal 0.000 0.000 0.010
Residual 0.194 0.157 0.108

AR(2) Parameters

Correlation (t− 1) 0.670 0.586 0.172
Correlation (t− 2) 0.115 0.121 0.172

Panel C: Oregon
Random Effects Parameters (SD)

School 0.339 0.288 0.153 0.220 0.202
Principal 0.000 0.000 0.000 0.035 0.000
Residual 0.159 0.152 0.138 0.148 0.132

AR(2) Parameters

Correlation (t− 1) 0.525 0.509 0.236 0.306 0.403
Correlation (t− 2) 0.076 0.096 0.162 0.122 0.091

Notes: Cells report standard deviations of variance components and percentage of overall variance
explained from Equation 14. Model 0 uses raw test scores, Model 1 adjusts for student demographic
characteristics, Model 2 adds cubic polynomials of lagged-test scores and attendance, Model 3 re-
stricts to students in first year in school, Model 4 uses prior-school outcomes. Models 3 and 4 not
estimated for NYC because we do not observe year of first enrollment. All models include grade
and year fixed effects. Demographic covariates include prior grade retention, gender, race/ethnicity,
disability status, 504 plan designation, participation in migrant or Indian education program and
the school averages of the preceding characteristics. All samples restricted to observations with at
least 25 students in each school-by-year cell.
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