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Abstract

Value added models (VAMs) attempt to estimate the causal effects of teachers and schools on
student test scores. We apply Generalizability Theory to show how estimated VA effects depend
upon the selection of test items. Standard VAMs estimate causal effects on the items that are
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had the test included alternative items. We introduce a model that estimates the magnitude of
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of teacher/school effects that are on average 22% too large (median = 7%, SD = 41%). We
discuss how imprecision due to heterogeneous VA effects across items attenuates effect sizes,
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1 Introduction

Value-added models (VAMs) of teacher and school effects play an important role in education

research as they promise to provide estimates of teacher and school effectiveness that account for the

non-random sorting of students into classrooms or schools (Chetty, Friedman, & Rockoff, 2014a;

Harris, 2009). Research demonstrates that VA estimates are more predictive of teacher and school

quality than alternative metrics such as teacher credentials and also that VA varies widely across

teachers and schools (Aaronson et al., 2007; D. D. Goldhaber et al., 2013; Rivkin et al., 2005). As a

result, VA estimates are commonly used as both predictors of future student outcomes (e.g., high

school graduation, income), and as outcomes in themselves to determine what observable features

(e.g., teacher years of experience, school size) predict VA to better understand the contribution of

teachers and schools to student outcomes (Aslantas, 2020; Chetty, Friedman, & Rockoff, 2014b;

Cowan et al., 2023; Hanushek & Rivkin, 2010). While generally applied to student achievement in

math and language, VAMs are flexible and have also been applied to alternative outcomes such as

social-emotional learning or attendance (C. K. Jackson, 2018; C. K. Jackson et al., 2020; Liu &

Loeb, 2021) and other distributional features of test scores such as within-school student variances

(Leckie et al., 2024). Given the prevalence of VA research in education, the statistical properties,

methodological considerations, and policy implications of VAMs have been the subject of extensive

discussion and debate over the past 25 years (Amrein-Beardsley et al., 2016; Association, 2015;

Bacher-Hicks & Koedel, 2023; Cawley et al., 1999; Chetty, Friedman, & Rockoff, 2014; Everson,

2017; Koedel et al., 2015; Levy et al., 2019; Manzi et al., 2014; Morganstein & Wasserstein, 2014;

Page et al., 2024; Pivovarova et al., 2016; Raudenbush, 2004; Schochet & Chiang, 2013).

Beyond their use in empirical research, state accountability systems have put VAMs to practical

use to identify—and subsequently reward or punish—highly effective and less effective teachers

(Konstantopoulos, 2014). In the United States, for example, under Race to the Top, VAM measures

were a required component of states’ accountability systems. Since the passage of the Every Student

Succeeds Act (ESSA), the use of VAMs has declined, but as of 2018, 15 states still used VAMs in
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their accountability systems (Close et al., 2018). In some cases, VAMs have informed high-stakes

decisions: the DC Impact program used VAMs to identify “minimally effective” teachers and fire

them if they did not improve within one year (Dee & Wyckoff, 2015). Similarly, Hanushek (2011)

suggests that replacing the least effective teachers, as measured by VAMs, with average teachers

would increase student welfare dramatically. Additional states use VAMs for lower-stakes purposes.

Common methodological questions related to VAM include identification and reliability. That

is, (1) to what extent do VA estimates provide unbiased causal impacts of teachers or schools on

student performance, and (2) how reliable are VA estimates of individual teachers and schools?

The former question of causal identification in VAMs has received extensive commentary in the

literature (J. Angrist et al., 2024; J. D. Angrist et al., 2017; Bitler et al., 2021; Kane et al., 2013;

Koedel et al., 2015; Reardon & Raudenbush, 2009; Rothstein, 2010; Rubin et al., 2004); the latter

question of VA reliability motivates the present study. Questions of causal identification aside,

issues of VA reliability are critical because the appropriate use of VA estimates in practice is often

contingent on the precision of the estimate. For example, if VA estimates are imprecise (i.e., show

low reliability), then teachers or schools could be arbitrarily punished or rewarded in ways that do

not reflect differences in their true underlying effectiveness (Amrein-Beardsley, 2014), judgments

of differences in student growth rates would be incorrect (Lockwood & Castellano, 2015; Monroe

& Cai, 2015; Wells & Sireci, 2020), and therefore the incentive effects of VA-based accountability

structures would be weakened (Brehm et al., 2017).

In this study, we consider that student outcomes used in VAMs are typically aggregates of

test items and therefore a teacher or school’s contribution to student learning may vary across the

individual items of an outcome measure. In other words, we investigate whether the impact of a

teacher or school on a student’s tendency to answer a given test item correctly can differ markedly

from the teacher or school’s impact on other items in the same test. Classic VAMs implicitly

estimate the average impact of the teacher or school (henceforth “cluster” to maintain generality)

over the set of items used, and thus do not take the representativeness of the items themselves into
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account when estimating uncertainty of the VA estimates (e.g., Koedel et al., 2015). This is an

important concern if tests contain different items from year to year.

We show analytically that when such cluster-by-item interactions are ignored, estimates of

both VA reliability and the variation in teacher or school effectiveness can be upwardly biased,

sometimes markedly so, thus inflating apparent differences between clusters. We then apply our

approach to both a case study of a large administrative dataset from secondary schools in Tanzania

and 41 outcomes across 25 empirical studies in education with item-level outcome data and baseline

variables. We find that cluster-by-item interactions are both prevalent and large in magnitude,

leading to an average overestimation of VA reliability by .12 (SD = .12) on the 0-1 reliability scale

and provide standard deviations of VA effects that are on average 20% too large (median = 7%,

SD = 41%). Thus, researchers using standard approaches to VAM may be severely overestimating

the reliability and variability of VA when test items vary across test administrations (or when the

intention is to draw inferences regarding a larger pool of possible items). As VAMs are typically

based on total test scores, rather than item-level scores, this item-level variation and the subsequent

reduction in VA reliability is often obscured.

The study is organized as follows. We review the rationale for VAMs and standard approaches

to estimating VAMs in Section 1.1. We discuss standard methods for estimating the reliability of VA

estimates in Section 1.2 and extend VAMs to individual item responses in Section 1.3. We outline

our methods and empirical data in Section 2. We examine results in Section 3. Section 4 concludes

with a discussion of policy implications, limitations, and future directions.
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1.1 Value-Added Models (VAMs)

A standard approach to VAMs is to model student performance, typically represented by a year-end

achievement test score, as a function of membership in cluster k, controlling for baseline scores:

postjk = β0 + β1prejk + uk + θjk (1)

uk ∼ N(0, σ2
u) (2)

θjk ∼ N(0, σ2
θ). (3)

Here, postjk and prejk are the year-end and prior-year test scores for student j in cluster k, β0 is

mean student performance when prejk = 0, uk is the cluster effect, and θjk is the student residual.

uk represents the residual cluster effect on posttest scores that is not accounted for by pretest scores.

VAMs often include covariates beyond pretest scores such as demographic variables to adjust for

other forms of student sorting within clusters that would otherwise bias estimates of cluster effects

(Levy et al., 2023). In other words, VAMs estimate the aggregate conditional status of students

in a cluster given the covariates (e.g., Castellano and Ho, 2015), and a causal interpretation of the

effect of uk on student performance is justified to the extent that the observed covariates capture

relevant pre-existing differences between clusters in terms of both the growth rate of the students as

well as true baseline ability. That is, the identification strategy underlying a VAM is a selection on

observables framework (Bacher-Hicks & Koedel, 2023; Rothstein, 2009).

While many alternative approaches to VAMs are available, such as cluster fixed effects, student

fixed effects, two-step approaches, multiple pretests, gain scores rather than covariate adjustment,

and others (see Koedel et al., 2015 for a review), we use the simple framework of Equation 1

throughout this study for clarity of exposition and because our arguments about the reliability of the

cluster VA effect uk do not depend on the specific VAM formulation used. Furthermore, although

cluster fixed effects approaches are perhaps the most common VAM estimation strategy in practice,

we use a cluster random effects approach because we need the variance of uk (σ2
u) to calculate

reliability, and the random effects model provides a consistent estimate of this variance. While

4



random effect models assume normal distributions on the random effects terms, model results tend

to be robust to violations of this assumption (Bell et al., 2019; Schielzeth et al., 2020).

1.2 Reliability of VA Estimates

Critically, uk is unobserved. While uk can be estimated from a statistical model by averaging the

student residuals in each cluster or with fixed effects or with empirical Bayes shrinkage estimators,

the estimate will contain measurement error that must be accounted for in subsequent analyses

to avoid bias (Lockwood & McCaffrey, 2020; McCaffrey et al., 2009). To quantify the degree

of measurement error in an estimate of uk, we can estimate its reliability. Reliability is defined

as the ratio of true score variance to observed score variance. More formally, in a Classical Test

Theory framework (Lord & Novick, 1968), we can decompose an observed score X into the sum

of a true score T and random measurement error E: X = T + E. Under the assumption that the

the error term is independent of the true scores (i.e., E ⊥⊥ T ), we can decompose the variances as

follows: σ2
X = σ2

T +σ2
E . Reliability, denoted ρ, is therefore defined as ρ =

σ2
T

σ2
X
=

σ2
T

σ2
T+σ2

E
. Reliability

values range from 0 to 1, where 0 indicates that observed variation is random noise and 1 indicates

that all observed variation reflects persistent underlying variation. An equivalent interpretation is

that reliability is the expected correlation between scores over replications, where 0 indicates no

correlation between replications and 1 indicates perfect correlation between replications. In general,

when using estimated scores in a second-stage analysis, lower reliability attenuates correlations

between variables and reduces statistical power (Bollen, 1989; Kline, 2023; Revelle & Condon,

2019).

Adapting the Classical Test Theory conception of reliability to the VAM case is straightforward.

An observed VA estimate (i.e., the average student residual in each cluster) is equal to its true

value uk plus the realized mean of the student residuals for cluster k, denoted θ.k. Assuming

homoskedasticity, the variance of θ.k is σ2
θ

J
, where J is the number of students in cluster k. Thus,

the observed variance of VA estimates for clusters of size J is σ2
u +

σ2
θ

J
because uk and θ.k are
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independent. Applying the Classical Test Theory reliability formula to these values yields:

ρk =
σ2
T

σ2
X

=
V (uk)

V (uk) + V (θ.k)
=

σ2
u

σ2
u +

σ2
θ

J

. (4)

In other words, Equation 4 provides the ratio of true cluster variance (σ2
u) to the variance in estimated

VA scores (σ2
u +

σ2
θ

J
), matching the Classical Test Theory formulation. Furthermore, Equation 4 can

easily be extended to additional levels of hierarchy or other facets of variation, such as occasions,

raters, or items as desired in a Generalizability Theory framework (Brennan, 1992, 2001; Gleser

et al., 1965). The ratio expressed by Equation 4 is mathematically equivalent to the expected

correlation between VA scores over replications. An advantage of Equation 4 is that it is estimable

with data from only one replication, making it attractive when calculating correlations between

replications directly is impractical or impossible. As such, Equation 4 and its extensions are common

in practice when estimating the reliability of cluster scores, in VAM contexts or otherwise (e.g.,

Jeon et al., 2009). Note that some research refers to the “stability” or “persistence” of VA effects

rather than VA reliability. We use the term reliability in this study because it is more general and

provides a framework for capturing the consistency of measurements across replications, however

defined (e.g., over time, with different students, with different items, etc.).

Research on VA reliability shows mixed results, with some studies showing high estimates of

VA reliability and others showing low estimates. For example, Briggs and Weeks (2011) show that

school VA estimates have generally high reliability, with strongly correlated results across estimation

methods and over time, whereas Yeh (2012) argues that the low reliability of teacher VA estimates

is a serious problem for their use in teacher accountability systems due to high misclassification

rates. Methodological considerations may partially explain these discrepant findings, as several

studies demonstrate the sensitivity of VAMs to the choice of outcome measure, model specification,

measurement error adjustments, and included covariates (Ehlert et al., 2014; D. D. Goldhaber et al.,

2013; Levy et al., 2019; Lockwood et al., 2007; McCaffrey et al., 2009; Newton et al., 2010; Tekwe

et al., 2004; Van De Grift, 2009), as well as idiosyncratic features such as the timing of a test within
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a school year (Atteberry & Mangan, 2020; Papay, 2011). Closely related is the extent to which

VA effects are stable from year to year. Again, the literature is mixed, with some studies showing

strongly correlated teacher VA effects over several years (Kersting et al., 2013; Konstantopoulos &

Chung, 2011), and others showing that less than half of VA effects persist over time (Andrabi et al.,

2011; Kinsler, 2012). Similarly, some research has examined how teacher VA effects may vary

across the students within a classroom (D. Goldhaber & Hansen, 2013; Lockwood & McCaffrey,

2009; Loeb et al., 2014).

Taken together, these findings suggest the importance of appropriately assessing VA reliability

and averaging estimates over sufficient replications (e.g., averaging teacher VA estimates over

several years) to obtain the desired level of precision. As we will show, consideration of item-

specific VA effects may help to explain the variation in these results.

1.3 VAMs with Item-Level Data

In most empirical applications, the posttest score is a single-number scaled score, constructed from

student responses to individual assessment items. When the item responses are available, we can

add a level to the model, in which items are indexed by i and the student j in cluster k’s response to

item i, yijk, is modeled directly:

yijk = β0 + β1prejk + uk + θjk + bi + eijk (5)

uk ∼ N(0, σ2
u) (6)

θjk ∼ N(0, σ2
θ) (7)

bi ∼ N(0, σ2
b ) (8)

eijk ∼ N(0, σ2
e). (9)

The key additions to this model include a random effect for item, bi, that accounts for systematic

variation in item easiness, and an error term eijk, capturing unexplained variability within students.
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uk continues to represent VA on student performance, averaged across items. We consider yijk to be

continuous for clarity of exposition but note that our arguments and results hold for dichotomous

and polytomous items that are more common in educational research. In our formulation, students

are nested within clusters but crossed with items. That is, every student responds to every item, but

a student is a member of only one cluster. Such designs are common, for example, when students

across multiple classrooms or schools take the same standardized test. Considering both the set of

students and items as random draws from a population, under Equation 5, the reliability of uk is as

follows, where I is the number of items:

ρk =
σ2
u

σ2
u +

σ2
θ

J
+ σ2

e

IJ

. (10)

We do not include the item variance σ2
b in this equation because, so long as all students answer

the same items, relative performance is not affected. That is, any variation in the average item

difficulty on realizations of a test will shift the entire distribution up or down, but will not change

the rank order of the respondents. Differences between VA reliability estimated with Equation 1

and Equation 5 will typically be negligible because σ2
e

I
is absorbed by σ2

θ in Equation 1 (see also

Appendix B). While Equation 1 is common in practice, we proceed with Equation 5 as our baseline

for comparison to more clearly demonstrate the implications of cluster-by-item interactions for

reliability.

Importantly for our purposes, Equation 10 assumes that the VA effects uk are constant across

items. This need not be the case; clusters may differentially add value to specific test items, above

and beyond any average effect represented by uk. Such heterogeneity of item-level effects is

well-documented in randomized controlled trials, wherein treatment impacts may vary markedly

across the items of the outcome measure (Ahmed et al., 2024; Gilbert, Himmelsbach, et al., 2024;

Halpin & Gilbert, 2024). We can allow for VA effects to vary by item by adding an interaction term

to the model, in which νik represents the residual VA effect on item i by cluster k after the main
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effect uk has been accounted for:

yijk = β0 + β1prejk + uk + θjk + bi + νik + eijk (11)

uk ∼ N(0, σ2
u) (12)

θjk ∼ N(0, σ2
θ) (13)

bi ∼ N(0, σ2
b ) (14)

νik ∼ N(0, σ2
ν) (15)

eijk ∼ N(0, σ2
e). (16)

The variance of these interactions, σ2
ν , captures the variability of VA effects at the item level. As a

concrete example, a positive value of uk indicates that cluster k improves student performance on

average, across all items. A positive value of νik implies that, net of any average effect, cluster k

further improves student performance on item i. The total cluster effect on item i is uk + νik.

Why might cluster effects vary across individual test items? One reason could be accountability

structures that incentivize teachers or schools to differentially focus on content within a test. For

example, Jacob (2005) shows that improvements on basic math skills were larger than those on

complex math skills following the introduction of test-based incentives. If the basic math skills are

easier to improve, these results may reflect reallocation of teacher effort (Taylor, 2023), and may be

related to issues of score inflation (Koretz, 2005, 2008), whereby improvements on item performance

do not reflect improvements on the underlying trait being measured. Another explanation could

be variation in within-teacher skills (Papay et al., 2020). For example, a teacher may simply be

better at teaching proportions than geometry, and therefore their VA may be higher on proportion

items compared to geometry items on a math test that includes both types of items. From the item

perspective, some items may simply be more “instructionally sensitive” than others (Naumann et al.,

2014; Polikoff, 2010). Whatever their causes, such effects would be captured by νik.

The inclusion of νik in the model implies an additional source of variation that affects the

reliability of uk. This occurs because, to the extent that test items vary across replications, the
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specific items selected and the pattern of cluster-by-item interactions become part of the total

variance in item performance. Assuming that the items are a random sample of some larger pool

of potential items, under Equation 11, the reliability of uk is as follows, where σ2
b is still omitted

because overall item easiness does not affect relative student (or cluster) performance:

ρk =
σ2
u

σ2
u +

σ2
ν

I
+

σ2
θ

J
+ σ2

e

IJ

. (17)

When σ2
ν = 0, Equation 17 reduces to Equation 10. However, the addition of σ2

ν

I
to the denominator

means that the reliability of uk will decrease to the extent that σ2
ν > 0, even as the number of

students per cluster goes to infinity. In other words, ρk will only asymptote to 1 as I, J → ∞, not

only as J → ∞.

Another way to illustrate the conceptual difference between Equations 10 and 17 is to consider

the interpretation of reliability as correlation between replications. That is, Equation 10 provides the

expected correlation between VA estimates when only students vary between replications, whereas

Equation 17 provides the expected correlation between VA estimates when both students and items

vary between replications. Because the specific items on a given realization of a test are typically

not of interest in themselves, but rather, as representative of some broader domain (De Boeck,

2008; Holland, 1990), we argue that the reliability captured by Equation 17 is likely to be more

meaningful in most empirical contexts. In other words, neither reliability is intrinsically correct

or incorrect. Rather, both equations provide an estimate of different conditional reliabilities that

depend on what facets of variation the researcher considers to be fixed or variable across replications.

While Equation 17 is extendable to additional sources of variation such as occasions, in this study,

we maintain focus on single-occasion estimates of reliability.

The reliability of VA estimates has received much commentary in the education research

literature, as described previously. However, the potential use of item-level data in VAMs has

received relatively little attention outside the psychometric literature in, for example, item difficulty
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modeling (Prowker & Camilli, 2007) and the effects of rapid guessing (Jensen et al., 2018). Similarly,

consideration of interactions between facets of variation (e.g., clusters and items, students and items,

items and time, etc.) is common in Generalizability Theory applications (Brennan, 1992, 2001; Jeon

et al., 2009), but as of yet, such considerations are rarely applied to VAMs. The closest example of

our proposed approach is Hawley et al. (2017), who use multiple test score outcomes in a latent

variable formulation of VAM. However, they do not examine the cluster-by-test interactions that

would be most analogous to our approach.

The present study is therefore motivated by three primary research questions (RQs):

1. What are the consequences of omitting the cluster-by-item interactions νik from the model on

the estimated variance of the cluster effects σ2
u and the estimated reliability of the estimated

cluster effect uk?

2. What are typical magnitudes of σ2
ν relative to σ2

u in empirical data in education?

3. To what extent does the presence of cluster-by-item interactions νik affect empirical estimates

of the variation and reliability of cluster effects in empirical data in education?

We examine RQ1 through an analytic derivation and confirm the results via simulation. We examine

RQ2 and RQ3 through the analysis of a case study of Tanzanian secondary schools and 41 additional

datasets in education that contain both item responses and baseline scores.

2 Methods

2.1 Analytic Derivation and Simulation

We demonstrate that when cluster-by-item interactions νik are present in the data-generating process

but omitted from the estimation model, both the estimated cluster variance σ̂2
u and the reliability

of uk, ρ̂k, are upwardly biased. In Appendix A, we provide an analytic derivation of these facts

under the simplifying assumptions that the data are balanced, students are randomly assigned to
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clusters, and there are no covariates in the model. In that case, E[σ̂2
u] = σ2

u +
σ2
ν

I
, thus inflating

estimated differences between clusters, and the remainder is distributed among the components of

the denominator of Equation 17. As a result, Equation 10 produces an upwardly biased estimate of

reliability when Equation 17 is the true data-generating process. The bias is approximately equal to

the following, where ρ̂k is the estimated reliability under Equation 10:

E[ρ̂k]− ρk ≈
σ2
ν

I

σ2
u +

σ2
ν

I
+

σ2
θ

J
+ σ2

e

IJ

. (18)

The bias will only be zero when σ2
ν = 0 or as I → ∞. We verify these analytic results with a

simulation study under a range of more complex conditions, including dichotomous item responses

and pretest measurement error, in Appendix C.

We can also understand these results on an intuitive level. Because the outcome is continuous,

the total variance in yijk is constant across models and σ2
ν is distributed among the other variance

components included in the model (Chan & Hedges, 2022; Lee & Hong, 2019; Shi et al., 2010; Ye

& Daniel, 2017). Figure 1 summarizes how σ2
ν is absorbed by the other variance components in the

model using a Venn diagram visualization (Brennan, 2001).

2.2 Empirical Application

2.2.1 Data Sources

We first analyze data from Brandt (2023), who examines a large administrative dataset from

Tanzanian secondary schools. We use these data for our case study because of their large size and

nation-wide scale. The outcome comprises secondary school test scores from the Form Two National

Assessment (FTNA), a standardized assessment administered by the Tanzanian government, from

about 650,000 students in about 5,000 secondary schools. A similar standardized test in primary

school, the Primary School Leaving Examination (PSLE), serves as the primary control variable. We

examine FTNA scores on 9 items (biology, chemistry, civics, English, geography, history, Swahili,

math, and physics) and PSLE scores on 5 items (English, Swahili, math, science, and society).
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Figure 1: Illustrating Variance Components and Their Bias Under Misspecification

The left figure provides a schematic of the crossed and nested variance components (σ2) from Equation 11, in which
students j are nested within clusters k and crossed with items i. The right figure shows how omitted cluster-by-item
interaction variance σ2

ν is absorbed by the remaining variance components in the model. I is the number of items, J
is the number of students per cluster, and K is the number of clusters. α = JK−J

JK−1 . We ignore σ2
b because it is not

necessary for the calculation of relative reliability. See Appendix A for additional detail.

All items are coded on a 0-4 Likert scale representing a letter grade in each subject (F = 0, D = 1,

C = 2, B = 3, A = 4). While the letter grade for each test subject is itself derived from yet more

individual test items, the dataset only provides the subject grades, which we treat as our “items”

for the purposes of this analysis. For simplicity, we limit our analysis to students with complete

primary and secondary school test score data. We generate scaled scores from the FTNA and PSLE

letter grades using a graded response model to serve as our outcome in the conventional VAM and

our control variable in all models, respectively (see Shores and Student, 2024).

We then apply our approach to datasets from a large collection of randomized controlled trials

(RCTs) with item-level outcome and baseline score variables in a variety of fields (B. Domingue

et al., 2024; Gilbert, Himmelsbach, et al., 2024). Here, we limit our analysis to the 41 outcomes from

25 studies in education in which the subjects are clustered in a higher-level unit such as classrooms

or schools. Table 1 summarizes the datasets and shows a wide range of regions, outcomes, and age

groups. When item-level data are available for the baseline measure, we construct scaled scores

using a One-Parameter Logistic (1PL) IRT model for dichotomous responses and a Partial Credit
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Model for polytomous responses. We examine only immediate post-intervention data in the eight

datasets with multiple follow-ups. While the original RCTs have some causal policy evaluation aim,

we use these data to explore the reliability of VA estimates and the magnitude of cluster-by-item

interactions in empirical data.

Table 1: Empirical Datasets

Dataset N K I N
K Cluster Location Age Outcome

1: Gilbert et al. (2023) 7797 110 30 70.88 school USA G3 Reading Comprehension
2: Kim et al. (2023) 2174 30 20 72.47 school USA G2 Reading Comprehension
5: Woods-Townsend
et al. (2021)

2486 37 7 67.19 school UK Adolescents Health Literacy

6: Bruhn et al. (2016) 15395 842 10 18.28 school Brazil Adolescents Financial Literacy
7: Kim et al. (2024) 1352 30 36 45.07 school USA G3 Vocabulary
8: Kim et al. (2024) 1303 30 29 43.43 school USA G3 Reading Comprehension
10: Kim et al. (2021) 4834 58 20 83.34 school USA G1-G2 Reading Self Concept
11: Kim et al. (2021) 2565 30 24 85.50 school USA G1 Vocabulary
12: Kim et al. (2021) 2580 30 24 86.00 school USA G2 Vocabulary
13: Romero et al. (2020) 3381 178 20 18.99 school Liberia Elementary Literacy
14: Romero et al. (2020) 3381 178 44 18.99 school Liberia Elementary Math
15: Romero et al. (2020) 3381 178 10 18.99 school Liberia Elementary Raven’s Progressive

Matrices
16: de Barros et al.
(2024)

3202 292 32 10.97 school India G4 Math

17: A. Duflo et al. (2024) 17344 498 21 34.83 school Ghana G1-G3 Math
18: A. Duflo et al. (2024) 17344 498 21 34.83 school Ghana G1-G3 English
19: A. Duflo et al. (2024) 17331 498 21 34.80 school Ghana G1-G3 Local Language
21: Davenport et al.
(2023)

3671 172 13 21.34 class USA G5 Math

22: Berry et al. (2018) 5290 135 10 39.19 school Ghana Adolescents Saving Attitudes
23: Bang et al. (2023) 886 41 38 21.61 class USA K-G1 Math
24: Llauradó et al.
(2014)

495 20 13 24.75 school Spain Elementary Dietary Behavior

25: Schreinemachers
et al. (2020)

775 30 15 25.83 school Nepal 8-12 Food Preferences

26: Schreinemachers
et al. (2020)

775 30 15 25.83 school Nepal 8-12 Food Knowledge

31: E. Duflo et al. (2015) 11893 400 6 29.73 school India Elementary Academic Achievement
32: Maruyama (2022) 3619 232 20 15.60 school El

Salvador
G7 Math

35: Persson et al. (2020) 1152 59 12 19.53 class Sweden High School Democratic Values
36: Persson et al. (2020) 1108 59 7 18.78 class Sweden High School Political Knowledge
41: Mohohlwane et al.
(2023)

3068 180 134 17.04 school South
Africa

Early
Elementary

Oral Reading Fluency

46: Glatz et al. (2023) 120 9 42 13.33 class Netherlands G1 Language
47: Glatz et al. (2023) 123 10 44 12.30 class Netherlands G1 Math
56: Sebele et al. (2023) 2307 74 4 31.18 school Liberia Preschool Literacy
64: Zhao et al. (2023) 4041 216 9 18.71 school Jordan Preschool Social Emotional Learning

Continued on next page
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Dataset N K I N
K Cluster Location Age Outcome

68: Banerjee et al.
(2017)

5974 399 35 14.97 school India G1-G4 Hindi

69: Banerjee et al.
(2017)

5966 399 30 14.95 school India G1-G4 Math

74: Gilbert, Kim, and
Miratrix (2024)

1225 29 12 42.24 school USA G2 Vocabulary

76: Thai et al. (2022) 428 20 78 21.4 classroomUSA K Math
77: Cabell et al. (2025) 1075 47 26 22.9 school USA K Language Fundamentals
78: Cabell et al. (2025) 1075 47 186 22.9 school USA K Vocabulary
79: Cabell et al. (2025) 1100 47 30 23.4 school USA K Narrative Language
80: Cabell et al. (2025) 1075 47 35 22.9 school USA K Vocabulary
81: Cabell et al. (2025) 1075 47 18 22.9 school USA K Science
82: Cabell et al. (2025) 1075 47 18 22.9 school USA K Social Studies

Notes: N = number of students, K = number of clusters, I = number of items, G = grade. For additional information
on these datasets, see Gilbert, Himmelsbach, et al. (2024). We include the original dataset IDs in our tables and figures
to facilitate replicability and comparability with the source study.

2.2.2 Empirical Models

We fit three models to each dataset: (1) traditional VAM with scaled scores, (2) item-level VAM

assuming constant item effects, and (3) item-level VAM allowing for cluster-by-item interactions.

We include the cluster mean of the pretest variable as an additional covariate in a Mundlak approach

that relaxes the random effects assumption that the level-1 covariates are uncorrelated with the

cluster effects (Antonakis et al., 2021; Mundlak, 1978; Rabe-Hesketh & Skrondal, 2022). Thus, the

empirical models are specified in reduced form as follows, in which Tk is the treatment indicator

and prek is the average pretest score for students within cluster k, with normal distributions on all

random effects:

Traditional VAM: postjk = β0 + β1prejk + γ1Tk + γ2prek + uk + θjk (19)

Constant Item VAM: yijk = β0 + β1prejk + γ1Tk + γ2prek + uk + θjk + bi + eijk (20)

Varying Item VAM: yijk = β0 + β1prejk + γ1Tk + γ2prek + uk + θjk + bi + νik + eijk. (21)
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We include the treatment indicator in the model because, to the extent that the treatment is effective

in a cluster-randomized trial, the variation in uk will increase by increasing the differences between

treatment and control clusters at posttest. For our case study analysis of the data from Brandt (2023),

the indicator for whether the school is public or private serves as an analog to the treatment indicator

in the other datasets. We primarily focus on the differences between Equations 20 and 21.

3 Results

3.1 Tanzanian Secondary Schools

Our analytic sample includes 5,697,342 item responses from 633,038 students across 4,721 schools.

The marginal internal consistencies (Dimitrov, 2003) of the FTNA and PSLE scaled scores are .92

and .80, respectively, and the student-level correlation between pre- and post-test scaled scores is

r = .49. Adjusting this correlation for the reliability of each score yields a disattenuated correlation

of r = .49√
.92

√
.80

= .57. Year-to-year correlations for school-age children on standardized tests are

typically stronger in United States data, around 0.75 to 0.85 for adjacent grades (e.g., Castellano

and Ho, 2013; Pollack et al., 2005). Exploratory factor analysis of the FTNA and PSLE show strong

evidence of unidimensionality, as the first factor explains the vast majority of the total variance. We

include additional descriptive statistics and psychometric analyses for the FTNA and PSLE items in

our supplement.

Table 2 shows the model results. We find relatively large cluster-by-item interaction variance,

representing about one third of the total item-level VA variance. Substantively, the estimated SD of

the cluster-by-item interactions of
√
.052 = .23 means that 95% of the variation in school VA on

individual items is within ±.46 points (on the 0-4 scale) of the overall VA. Accordingly, the AIC,

BIC, and log-likelihood fit statistics show that Model 3 provides a vastly better fit to the data than

Model 2. In line with our simulation results (Appendix C), fixed effect coefficients and standard

errors are not affected, and the variance components of Model 2 behave as we would expect from

the analytic results in Appendix A. Namely, σ̂2
u and σ̂2

e increase whereas σ̂2
θ decreases.
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Figure 2 shows the implications of the cluster-by-item interactions for VA reliability, in which

the x-axis shows school sample size and the y-axis shows estimated VA reliability derived from the

variance components in Table 2, with the lines color-coded by model. Omitting the cluster-by-item

interaction term from the model inflates estimated reliability, as expected, and this holds for both the

item-level VAM (Model 2) and the traditional VAM using scaled scores as the outcome (Model 1).

To illustrate the policy implications of Figure 2, consider the number of students needed to obtain a

VA estimate with reliability .90, depicted as a horizontal dashed black line in the figure. Under the

scaled score model, the policymaker will erroneously conclude that about 30 students are required,

when in truth, the magnitude of cluster-by-item interactions means that about 60 students are

required. We include additional discussion of the interpretations of the various reliability estimates

in this dataset in Appendix D. Namely, Models 1 and 2 capture the expected correlation between

VA estimates when students vary but items remain fixed; Model 3 captures the expected correlation

between VA estimates when both students and items vary. As we argue in Section 1, generally, the

latter estimate is more meaningful when the goal is to generalize VA effects to the broader content

domain represented by the items.

3.2 Large-Scale Application

Our analytic sample of 41 outcomes from 25 studies contains 165,241 respondents (some of whom

are included more than once because some studies include multiple outcome measures), 1,219

items, and 3,476,021 item responses. In general, outcome internal consistency is high (median =

.82), item discrimination is high (median = 1.32), and item discriminations are somewhat variable

within outcomes (median SD = .51).

Figure 3 shows the proportion of item-level VA variance due to cluster-by-item interactions

( σ2
ν

σ2
u+σ2

ν
) by dataset. We see that most datasets show extensive cluster-by-item variance, with the vast

majority showing proportions over 50%. These results suggest that, far from a purely theoretical

concern, cluster-by-item VA interactions are both large and prevalent in a wide range of empirical

data. These findings are consistent with prior work on item-level heterogeneous treatment effects
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Table 2: VAMs Fit to Brandt (2023) Data

M1: Scaled Scores M2: Item Main Effects M3: Item Interactions
Intercept −0.069 (0.007)∗∗∗ 1.031 (0.536) 1.031 (0.157)∗∗∗

Baseline 0.464 (0.001)∗∗∗ 0.450 (0.001)∗∗∗ 0.450 (0.001)∗∗∗

Mean Baseline 0.084 (0.012)∗∗∗ 0.153 (0.011)∗∗∗ 0.153 (0.011)∗∗∗

1 = Private 0.786 (0.014)∗∗∗ 0.791 (0.013)∗∗∗ 0.792 (0.013)∗∗∗

AIC 1376361.496 12487092.128 12021003.212
BIC 1376429.646 12487200.572 12021125.212
Log Likelihood −688174.748 −6243538.064 −6010492.606
Num. obs. 633038 5697342 5697342
K 4721 4721 4721
σ2
u 0.144 0.121 0.115

σ2
e 0.502 0.411 0.367

N 633038 633038
I 9 9
σ2
θ 0.353 0.358

σ2
b 2.587 0.220

K × I 42489
σ2
ν 0.052

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: Model 1 is based on a scaled score derived from a graded response model; Models 2 and 3 use the individual
item responses. K = number of schools, N = number of students, I = number of items. The baseline score is the PSLE
scaled score derived from a graded response model. Mean Baseline is the school-average pretest score.
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Figure 2: Model-Implied Reliability of School VA Estimates from Brandt (2023) Data
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The y-axis shows the estimated reliability of a school VA estimate and the x-axis shows the number of students per
school and ranges from the 10th to 90th percentile of observed school sample sizes. The lines are color coded by model.
Model 1 is based on a scaled score derived from a graded response model. Models 2 and 3 use the individual item
responses and assume constant VA and cluster-by-item interactions, respectively. The horizontal dashed line shows the
number of students required to achieve a reliability of .90.

demonstrating that the effects of educational interventions often vary substantially across the items

of the outcome measure (Ahmed et al., 2024; Gilbert, Himmelsbach, et al., 2024; Halpin & Gilbert,

2024). We include tables of the full model results for each dataset in our supplement.

Figure 4 shows the implications of these cluster-by-item interactions for the reliability of VA

estimates. Because the number of students per cluster and the number of items answered by students

varies in these data, we use the averages for each dataset in our reliability calculations. As expected

from the analytic and simulation results, estimated VA reliability from the main effects model is in

all cases equal to or greater than that of the interaction model (mean difference = .12, median = .09,

SD = .13, on the 0-1 reliability scale). The differences in reliability are sometimes substantial, with

many datasets showing inflation in estimated VA reliability of .20 or greater when cluster-by-item

interactions are not accounted for. Accordingly, Figure 5 shows that the estimated SDs of the cluster
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effects (σ̂u) derived from the main effects models are on average 22% greater than those of the

interaction models (median = 7%, SD = 41%).

Figure 3: Proportion of Item-Level VA Variance Due to Cluster-by-Item Interactions in Empirical
Datasets
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The y-axis shows the proportion of item-level VA variance due to cluster-by-item interactions ( σ2
ν

σ2
u+σ2

ν
) and the x-axis

shows the dataset ID. Points are color-coded by the unit of clustering. Dataset 47 is missing because reliability from
both models is estimated at 0.

We replicate these analyses using IRT scaled scores instead of item responses as the outcome

variable to match the more typical approach to VAM (Equation 1). We find essentially identical

results to those reported here. Namely, using scaled scores rather than item responses as the

outcome variable only slightly inflates estimated reliability compared to the item-level model

assuming constant VA effects (mean difference = .016, p = .28), whereas estimated reliability

is significantly inflated compared to the cluster-item interaction model (mean difference = .138,

p < .001). Thus, supporting the simulation results and analytic derivations, it is the omission of the

cluster-item interactions from the model, not the construction of average or scaled scores per se,

that leads to the most severe bias in estimated reliability.
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Figure 4: Estimated Bias in VA Reliability in Empirical Datasets

1

2

5

6

78

10

11

12

13

14

15

16

17
18

19

21

22

23

24

25

26

31

32

35

36

41

46

56

64

6869

74

76 77
78

79

80

8182

0.0

0.2

0.4

0.6

0.4 0.6 0.8 1.0
Prop. VA due to Cluster−Item Interactions

B
ia

s 
in

 R
el

ia
bi

lit
y

The x-axis shows the proportion of item-level VA variance due to cluster-by-item interactions ( σ2
u

σ2
u+σ2

ν
) and the y-axis

shows the estimated bias in reliability. The points are labeled by dataset ID. Dataset 47 is omitted because reliability
from both models is estimated at 0.

3.3 Robustness Checks

Our empirical conclusions about inflated VA reliability and SDs of VA effects rest on the magnitude

of σ2
ν relative to σ2

u. Here, we consider two robustness checks to probe the sensitivity of our results,

motivated by potential mechanisms that could affect σ2
ν : (1) varying relationships between pretest

scores and item scores and (2) non-linearity and ceiling/floor effects induced by the categorical item

responses.

First, consider the assumption that the relationship β1 between prejk and yijk is constant across

all combinations of items and clusters (e.g., C. D. Jackson, 2013). This assumption may not hold

when, for example, a teacher notices relative strengths and weaknesses among their students and

reallocates instructional effort accordingly. Such a mechanism would theoretically yield different

relationships between prejk and yijk because, if a teacher focuses on a particular content area to

compensate for student weaknesses, we might see a weaker relationship between prejk and yijk on

items that measure those specific competencies. This would occur to the extent that added instruction
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Figure 5: Estimated Bias in VA SDs in Empirical Datasets

1
2

5

6

78

11

12

13

14
15 1621

22

23

25

2631

35

36

4146

56

64
68

69

74

76

7879

81

82

1.0

1.5

2.0

2.5

3.0

10 30 100
Mean N Items

In
fla

tio
n 

of
 C

lu
st

er
 S

D

The x-axis shows the mean number of items answered by students and the y-axis shows the estimated bias in σ̂u as a
ratio (i.e., 2 means that the σ̂u is twice as large in the constant item effects model compared to the interaction model).
The points are labeled by dataset ID. Three datasets are omitted because σ̂u from the constant effects models are
estimated at almost exactly 0.

in a content area reduces variation in student performance, thus weakening the relationship between

prejk and yijk for relevant items. Similar reasoning applies if a teacher focuses on lower performing

students to differentially improve performance on the types of items on which those students may

struggle most. We explore this possibility by estimating a random slopes version of Equation 11 in

which every cluster-item combination gets a unique slope for prejk. This could potentially reduce σ2
ν .

Applying this more flexible model to our empirical data shows near identical results to our primary

analyses: the difference in VA reliability estimates between the two methods is on average less than

.01 and the mean proportion of item-level VA variance due to cluster-by-item interactions is 72%,

compared to 75% for our main specification. Thus, differential prediction of item performance by

pretest appears to be an unlikely explanation for our findings.

Second, all items from our empirical applications are categorical (dichotomous or polytomous)

rather than continuous. While some evidence suggests that VAMs are relatively robust to floor or

ceiling effects (Koedel & Betts, 2010), such effects may be compounded when analyzing item-
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level data rather than aggregated test scores. For example, σ2
ν may be artificially inflated if items

vary extensively in their difficulty, because a constant effect on overall student performance could

manifest as variable effects on accuracy rates due to non-linear scaling, as in a logit model. That is,

a constant improvement of one logit would bring an item with a baseline accuracy rate of 50% to

73% (23 percentage points), but would bring an item with a baseline accuracy rate of 88% to 95%

(7 percentage points), creating the illusion of cluster-by-item interaction variance in a linear model

when the true cause is non-linearity (Ho, 2008). We explore the consequences of categorical item

responses in two ways. First, we replicate our simulation study (Appendix C) with dichotomous

items (and pretest measurement error) and find that the pattern of results is identical to those using

the models with continuous items. Second, we fit cross-classified logit models to the 36 of our

empirical datasets with binary item responses because logit models can correct for ceiling and floor

effects and related scaling issues (B. W. Domingue et al., 2022; Gilbert, Miratrix, et al., 2025).

We find that the pattern of results is essentially unchanged from our main analyses, with a mean

proportion of item-level VA variance due to cluster-by-item interactions of 68% compared to 75% in

the linear models. Thus, the categorical item responses are unlikely to confound the large estimates

of σ2
ν observed in the linear models.

4 Discussion

4.1 Implications

VAMs have persisted as a standard method for evaluating teachers and schools in research and

practice. While prior studies have examined the reliability of VA estimates and their persistence

over time, the influence of the specific tested items has remained relatively unexplored. In this

study, we show that cluster-by-item interactions are both large and prevalent in a wide range of

empirical datasets in education. Thus, the implicit assumption of standard VAMs that cluster effects

are constant across items appears unrealistic.
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Our findings have several important implications for the broader conversation about the use of

VAMs in education research:

1. Cluster-by-item interaction variance exists in practice because some teachers and schools are

better at improving some subskills on a test than others. This variance is large in empirical

data. As a proportion of the total item-level VA variance, cluster-by-item interactions account

for about 33% in a large administrative dataset from Tanzania (Table 2) and typically exceed

50% in our sample of 41 outcomes from 25 empirical studies in education (Figure 3).

2. Ignoring cluster-by-item interaction variance in standard VAMs leads researchers to assume

that reliability of cluster VA effects is higher than it is (Appendix A). The bias in reliability is

zero only when the variance of cluster-by-item interactions is 0 or the number of items grows

to infinity.

3. Researchers and policymakers who ignore cluster-by-item interaction variance may falsely

conclude that their tests are sufficient to estimate VA at a desired level of reliability, when in

fact they may need longer tests (Figure 2). Thus, assessments longer than standard VAMs

predict may be necessary in high-stakes situations where high VA reliability is essential,

especially when domains are broad and cluster-by-item interactions may be high.

4. Researchers and practitioners may conclude that VA estimates vary substantially from year to

year and that they need to average over multiple years for stable estimates, when in fact this

is in part due to cluster-by-item interaction variance, and they could also address this issue

with longer tests, given that standardized test items typically shift from year to year (Holland

& Dorans, 2006; Kolen & Brennan, 2014) (Appendix D).

5. Measurement error due to cluster-by-item interactions attenuates correlational relationships

between VA estimates and downstream outcomes, so these relationships would be stronger

and perhaps more consistent if we correct for measurement error (Kline, 2023). Similarly,

when used as outcomes, the measurement error in VA estimates will attenuate standardized
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effect sizes when estimated in two-step models (Gilbert, 2024a; Hedges, 1981). Thus, the

predictive effects of VA on downstream outcomes and effects of predictors on VA may be

underestimated while differences between clusters may be simultaneously overestimated.

6. Because cluster-by-item interactions are not well conceptualized in VAMs for non-cognitive

variables, our findings may partially explain why teachers’ VA on behavioral measures appears

more strongly correlated with students’ long-term outcomes than teachers’ test-score VA. For

example, C. K. Jackson (2018) uses absences, suspensions, grades, and grade repetition as

a proxy for non-cognitive skills in a VAM framework. Unlike state standardized test items,

Jackson’s non-cognitive “items” remain constant year over year and thus the effect of potential

cluster-by-item interactions does not reduce the reliability of the VA estimates, potentially

resulting in less attenuation of the effect compared to test score VA estimates.

7. Item-level data are necessary for a full accounting of VA effects. When available, researchers

estimating VA reliability should use item-level data to account for potential cluster-by-item

interactions. The degree of inflated reliability and variation of teacher and school effects in

our empirical datasets would not be estimable from total scores alone. As shown in Figures 4

and 5, VA reliability and variation derived from standard models likely represents an upper

bound on true reliability and variation. Thus, researchers should heed calls to share item-level

data as part of their replication packages (B. Domingue et al., 2024).

4.2 Extensions and Future Directions

Given the large cluster-by-item interaction variances observed in the empirical data, what might

explain such variance? We view this question as a promising area for future research. While Equation

11 assumes that the cluster-by-item effects νik are idiosyncratic, it is nonetheless possible that νik

may reflect some shared influences omitted from the model, such as relative teacher proficiency

on certain item clusters, as discussed in Section 1.3. By interacting cluster-level covariates with

item-level covariates (e.g., teacher years of experience and whether an item is multiple choice or
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open response), our modeling framework easily allows researchers to specify and test hypotheses

about the sources of cluster-by-item variance (see, e.g., Cohodes, 2016, who examines whether

charter school impacts are consistent across subscales of a state test in an instrumental variables

framework).

Similarly, item-specific VA estimates may serve as useful predictor variables if improvements

on specific subskills within a domain are relevant for future student outcomes, or to identify a

teacher’s relative strengths and weaknesses for formative purposes (e.g., Papay et al., 2020). When

qualitative data such as item text is also available, further research might then explore the extent

to which different types of measures such as researcher-developed vs. independently-developed

assessments show different degrees of cluster-by-item interactions (see Gilbert and Soland, 2024)

or how qualitative evidence on the nature of the domain and how items represent the domain may

help to understand differential patterns of VAM across items (Ho, 2024).

We caution, however, against over-interpreting estimates of individual item-specific VA esti-

mates, as these will tend to be imprecisely estimated unless the number of students per cluster is

large. An individual cluster-by-item interaction νik has reliability σ2
ν

σ2
ν+

σ2
θ
J
+

σ2
e
J

. For example, in the

Brandt (2023) data, an individual cluster-by-item interaction has a reliability of .65 for a school

with 25 students and .78 for a school with 50 students.

A further promising area of extension would be to simultaneously consider multiple levels

of hierarchy, such as students within teachers within schools. Whereas our empirical examples

demonstrate 2-level structures, 3-level approaches could help determine to what extent between-

school variance is explained by, for example, teacher-by-item interactions. Conversely, differences

between teachers across schools may be partially explained by school-by-item interactions. A full

decomposition of VA effects at the student, teacher, school, and item levels could provide important

insights into the sources of VA effects in a broad range of real-world contexts.

In a similar vein, we focus in this study on reliability estimates derived from a single measure-

ment occasion. The extent to which cluster-by-item interactions may relate to changes in VA over

time are complex and worthy of further study. It may be, for example, that some proportion of year-
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to-year variation in estimated VA reflects simultaneous changes in items across test administrations.

More complex models that include clusters, students, items, occasions, and their interactions are a

promising area of future research that would serve to further disentangle the interplay among these

facets of variation.

Furthermore, our models are homoskedastic in that they assume that the cluster-by-item variance

is constant across clusters. This need not be true, as some clusters may have relatively consistent

impacts on item performance while others have more variable impacts. Extensions of our modeling

approach to allow for heteroskedasticity, and explorations of the extent to which more or less

consistent VA effects across items are themselves predictors of other student outcomes offer another

promising avenue of exploration (Cárdenas-Hurtado et al., 2025; Leckie et al., 2024; Wiedermann

et al., 2024).

4.3 Limitations

While our arguments are strengthened by the convergent evidence from analytic, simulation, and

wide-ranging empirical results, we note several key limitations of our study:

1. Much of the VAM literature in the United States examines data from state longitudinal

testing systems, for which item responses are generally unavailable to secondary researchers

in public repositories. As a result, our empirical data mostly come from global program

evaluations, which may differ in important but unknown ways from state testing contexts.

While the consistently large magnitudes of cluster-by-item interaction variance across our

empirical datasets leads us to conjecture that similar results would obtain in other contexts,

we view the replication of our approach with state test data to be a promising extension,

particularly exploring the extent to which changes in test items across years may be related to

VA reliability estimates derived from other methods.

2. We did not emphasize another important issue with VAMs here, namely, that the pretest scores

used as covariates themselves contain measurement error (Lockwood & McCaffrey, 2014).
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In general, measurement error reduces the predictive power of the pretest score. The extent to

which pretest measurement error affects the reliability of VA estimates depends on the extent

to which the pretest scores explain variation at different levels of the model. That is, increased

residual variation at the student level would reduce estimated reliability, but increased residual

variation at the cluster level would increase estimated reliability. These issues have further

implications for the use of cluster-mean pretest scores in the Mundlak model (Asparouhov &

Muthén, 2019; Hamaker & Muthén, 2020). Thus, the effects of pretest measurement error on

VA reliability are complex. From a causal identification perspective, pretest measurement

error may yield biased VA estimates to the extent that the model fails to fully control for

pre-existing differences in student proficiency (Lockwood & McCaffrey, 2014). On the other

hand, if students select into clusters based on observed pretest scores (such as exam schools

with observed score cutoffs for admission), pretest measurement error adjustments may be

counterproductive. While several of our empirical datasets contain item-level pretest data,

software constraints in R limit us from estimating multilevel models with both latent pretests

and item-level outcomes. That is, novel packages such as galamm (Sørensen, 2024) allow for

cross-classified random effects models such as those explored in this study with either latent

outcomes or latent covariates, but not both (Ø. Sørensen, personal communication, December

8, 2024), though fully Bayesian approaches using brms may provide an alternative (Bürkner,

2017). However, replication of our simulation study in Appendix C with varying degrees of

pretest measurement error shows that the pattern of results is unchanged.

3. Our reliability estimates treat the variance components as known, when they are estimated

with uncertainty. Thus, when the number of clusters and/or items is low, estimates of σ2
ν may

be unstable and point estimates of reliability may fail to capture the uncertainty of estimation,

particularly in decision-making contexts. While beyond the scope of the present study,

several researchers have proposed Bayesian Generalizability Theory approaches that more

easily allow for uncertainty estimates for variance components and may therefore provide an
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attractive approach in contexts with limited data (De Maeyer, 2021; Jiang & Skorupski, 2018;

LoPilato et al., 2015).

4. Our models assume that each item is equally discriminating with respect to the unobserved

true score. This assumption is standard in Generalizability Theory applications but can be

relaxed in factor analytic or IRT-based approaches that allow for a unique factor loading

or item discrimination for each assessment item (McNeish & Wolf, 2020). Varying item

discriminations could theoretically inflate σ2
ν because a constant improvement to latent

academic achievement would manifest as differential improvements to item performance,

even when the general non-linear scaling implied by a logit model is taken into account

(Gilbert, Himmelsbach, et al., 2024, Appendix A). More flexible models that allow for

varying item discriminations exist, but are computationally demanding (generally requiring

MCMC estimation) and can be difficult to interpret (Bürkner, 2021; Gilbert, 2024b; Gilbert,

Zhang, et al., 2025).

5. Our models assume a unidimensional construct, which is one reason we estimate separate

models for the different outcomes from the subset of studies that contributed more than one

outcome measure. Multidimensional extensions of Generalizability Theory are possible and

would allow for simultaneous consideration of multiple outcomes in a single model but are

beyond the scope of the present study (Durvasula et al., 2006; Jiang & Skorupski, 2018;

Vispoel et al., 2023).

6. Our arguments apply to estimates of VA reliability derived from Generalizability Theory

formulas, whether based on scaled scores or item responses. When correlations between

VA estimates are calculated directly and items differ between replications, the estimated

correlation will inherently capture any cluster-by-item interaction variance. More concretely,

when researchers calculate VA estimates for teachers across two separate years and correlate

them, both the students and items typically vary across years and therefore the correlation

appropriately captures both sources of variation (in addition to variation over time, which
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will likely deflate the estimated reliability further). As we show in Appendix D, using our

proposed item interaction model can capture such variation even when data from only a

single time point is available. Thus, our arguments about the importance of cluster-by-item

interactions are most relevant to contexts in which estimating VA reliability is based on

Generalizability Theory formulas rather than correlations between replications with varying

items.

4.4 Conclusion

Identification of effective teachers and schools remains a promising and active area in educational

research and practice. By adjusting for observed differences between students, VAMs provide

useful estimates of putatively causal effects of teachers and schools when selection-on-observables

assumptions are realistic. However, by failing to account for cluster-by-item interactions, standard

approaches to VAM generally yield systematically inflated estimates of both the degree of variation

between teachers or schools and the reliability of the VA estimates themselves. As a result, teacher

and school effectiveness may be both less stable and more predictive of student outcomes than

current evidence suggests. Thus, our understanding of the impact of teachers and schools on student

learning will remain incomplete unless all sources of variation such as cluster-by-item interactions

are appropriately accounted for.
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Appendices

A Demonstration that Estimated VA Reliability is Upwardly Biased when

Cluster-by-Item Interactions are Present but Omitted from the Model

Consider the following data-generating model that includes cluster-by-item interactions νik:

yijk = uk + θjk + bi + νik + eijk (22)

uk ∼ N(0, σ2
u) (23)

θjk ∼ N(0, σ2
θ) (24)

bi ∼ N(0, σ2
b ) (25)

νik ∼ N(0, σ2
ν) (26)

eijk ∼ N(0, σ2
e), (27)

where all random effects are assumed mutually independent. For clarity of exposition, we omit the

grand intercept β0 and the pretest covariate β1 and suppose the data are balanced with i = 1, ..., I

items, j = 1, ..., J students per cluster, and k = 1, ..., K clusters. Thus, there are IJK total

observations.

We are interested in the estimated reliability of uk when, instead of Equation 23, we fit the

following misspecified model that omits the cluster-by-item interactions νik:

yijk = uk + θjk + bi + eijk (28)

uk ∼ N(0, σ2
u) (29)

θjk ∼ N(0, σ2
θ) (30)

bi ∼ N(0, σ2
b ) (31)

eijk ∼ N(0, σ2
e). (32)
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We first establish ANOVA estimators for the variance components in Equation 28. In balanced

designs, the closed-form ANOVA estimators of variance components are equivalent to REML

estimation (Wulff, 2008). We define the following sums of squares:

SSe =
I∑

i=1

J∑
j=1

K∑
k=1

(yijk − ȳ.jk − ȳi.. + ȳ...)
2 (33)

SSi = JK

I∑
i=1

(ȳi.. − ȳ...)
2 (34)

SSj|k = I

K∑
k=1

J∑
j=1

(ȳ.jk − ȳ..k)
2 (35)

SSk = IJ
K∑
k=1

(ȳ..k − ȳ...)
2. (36)

Using these, we define the mean squares:

MSe =
SSe

IJK
(37)

MSi =
SSi

I − 1
(38)

MSj|k =
SSj|k

K(J − 1)
(39)

MSk =
SSk

K − 1
. (40)

The ANOVA estimators are defined in terms of these mean squares (Searle et al., 2006):

σ̂2
e = MSe (41)

σ̂2
θ =

MSj|k −MSe

I
(42)

σ̂2
u =

MSk −MSj|k

IJ
. (43)

We ignore σ̂2
b here as it does not factor into the estimated relative reliability.

To understand the effects of model misspecification on estimated reliability, we next derive the

expectations of these estimators when there is unmodeled cluster-by-item variance. That is, we find
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the expectations of the mean squares under Equation 28 when Equation 23 is the data-generating

process.

We begin with E[MSk]. To derive this, it is convenient to develop alternate expressions of its

constituent parts, y..k and y....

y..k =
1

IJ

I∑
i=1

J∑
j=1

yijk =
1

IJ

I∑
i=1

J∑
j=1

(
bi + θjk + uk + νik + eijk

)
. (44)

Then we regroup this expression as sums of each parameter.

y..k =
(
1
I

I∑
i=1

bi
)
+
(
1
J

J∑
j=1

θjk
)
+ uk +

(
1
I

I∑
i=1

νik
)
+
(

1
IJ

I∑
i=1

J∑
j=1

eijk
)
. (45)

Similarly for the overall (grand) sample mean:

y... =
1

IJK

K∑
k=1

I∑
i=1

J∑
j=1

yijk (46)

=
1

IJK

K∑
k=1

I∑
i=1

J∑
j=1

(
bi + θjk + uk + νik + eijk

)
, (47)

=
(
1
I

I∑
i=1

bi
)
+
(

1
JK

K∑
k=1

J∑
j=1

θjk
)
+ (48)

(
1
K

K∑
k=1

uk

)
+
(

1
IK

K∑
k=1

I∑
i=1

νik
)
+
(

1
IJK

∑
k,i,j

eijk
)
. (49)

Recall that SSk involves the squared difference of these two sample means. We now take this

difference, grouping like terms:

(
y..k − y...

)
=

(
1
J

J∑
j=1

θjk − 1
JK

K∑
k=1

J∑
j=1

θjk
)
+
(
uk − 1

K

K∑
k=1

uk

)
+ (50)

(
1
I

I∑
i=1

νik − 1
IK

K∑
k=1

I∑
i=1

νik
)
+
(

1
IJ

∑
i,j

eijk − 1
IJK

∑
k,i,j

eijk
)
. (51)
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This is equivalent to

y..k − y... =
(
θ.k − θ..

)
+
(
uk − u

)
+
(

1
I

∑
i

νik − ν
)
+
(
e..k − e...

)
. (52)

Now recall that

SSk = IJ
K∑
k=1

[(
y..k − y...

)]2
, MSk =

SSk

K − 1
, (53)

and notice that

(y..k − y...)
2 = (θ.k − θ..)

2 + (uk − u)2 +
(

1
I

∑
i

νik − ν
)2

+ (54)

(
e..k − e...

)2
+ (cross terms), (55)

where the cross-terms are all independent, so their expectations are zero. For example, E[(uk −

u)(e..k−e...)] = E[(uk−u)]E[(e..k−e...)] = 0. Therefore, we only need to consider the expectations

of the squared terms. By linearity, we can consider the expectation of each squared difference

separately. We then have

E[(θ.k − θ..)
2] =

(K − 1)σ2
θ

J
⇒ IJ

1

K − 1

K∑
k=1

E[(θ.k − θ..)
2] = Iσ2

θ (56)

E[(uk − u)2] = (K − 1)σ2
u ⇒ IJ

1

K − 1

K∑
k=1

E[(uk − u)2] = IJσ2
u (57)

E
[(

1
I

∑
i

νik − ν
)2]

=
(K − 1)σ2

ν

I
⇒ IJ

1

K − 1

K∑
k=1

E
[(

1
I

∑
i

νik − ν
)2]

= Jσ2
ν (58)

E
[
(e..k − e...)

2
]
=

(K − 1)σ2
e

IJ
⇒ IJ

1

K − 1

K∑
k=1

E
[
(e..k − e...)

2
]
= σ2

e , (59)

where the first equation of each line is given by the standard ANOVA result for the squared difference

between a group mean and a grand mean (Searle et al., 2006, Chapter 4). Now, by linearity, we
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have that

E[MSk] = IJσ2
u + Iσ2

θ + Jσ2
ν + σ2

e . (60)

The expectations of the other mean squares can be derived similarly.

E[MSj|k] = Iσ2
θ + σ2

e (61)

E[MSk] = IJσ2
u + Iσ2

θ + Jσ2
ν + σ2

e (62)

E[MSi] = JKσ2
b + Jσ2

ν + σ2
e (63)

E[MSe] = σ2
e + ασ2

ν (64)

where α = J(K−1)
JK−1

.

Given these expectations, the expectations of our variance estimators under the true model is

then

E[σ̂2
e ] = E[MSe] = σ2

e + ασ2
ν (65)

E[σ̂2
θ ] = E

[MSj|k −MSe

I

]
= σ2

θ −
ασ2

ν

I
(66)

E[σ̂2
u] = E[

MSk −MSj|k

IJ
] = σ2

u +
σ2
ν

I
. (67)

Our principal interest is in the estimated reliability of the cluster effect uk:

ρ̂ =
σ̂2
u

σ̂2
u +

σ̂2
θ

J
+ σ̂2

e

IJ

(68)
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By the delta method, the approximate expectation for this estimator is

E[ρ̂] ≈ E[σ̂2
u]

E[σ̂2
u] + E[ σ̂

2
θ

J
] + E[ σ̂2

e

IJ
]

(69)

=
σ2
u +

σ2
ν

I

σ2
u +

σ2
ν

I
+

σ2
θ−

ασ2
ν

I

J
+ σ2

e+ασ2
ν

IJ

(70)

=
σ2
u +

σ2
ν

I

σ2
u +

σ2
ν

I
+

σ2
θ

J
+ σ2

e

IJ

. (71)

Compared to Equation 17, we have added σ2
ν

I
to the numerator while the denominator is unchanged.

Thus, the bias in reliability will be approximately equal to:

E[ρ̂]− ρ ≈
σ2
ν

I

σ2
u +

σ2
ν

I
+

σ2
θ

J
+ σ2

e

IJ

(72)

and will only be 0 when σ2
ν = 0 or I → ∞.

B Demonstration that Estimated VA Reliability is Upwardly Biased in the

Standard Mean Score Model

We next show that if we use mean scores rather than individual item responses, the estimated

reliability of uk is similarly upwardly biased. Consider again the individual item responses and their

variance:

yijk = uk + θjk + bi + νik + eijk (73)

V (yijk) = σ2
u + σ2

θ + σ2
b + σ2

ν + σ2
e . (74)

When all students respond to the same set of items, we can ignore σ2
b because differences in item

easiness do not affect relative differences in performance.
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To obtain the variance of the student average score, postjk = 1
I

∑I
i=1 yijk, we divide both σ2

ν

and σ2
e by I because the scores are averaged across items:

V (postjk) = σ2
u + σ2

θ +
σ2
ν

I
+

σ2
e

I
. (75)

When fitting a standard VAM of postjk in a multilevel model of students nested within clusters,

instead of the true variance components σ2
u and σ2

θ we instead estimate σ̂2
u and σ̂2

θ where σ2
ν

I
and σ2

e

I

are absorbed into the cluster and student components, respectively:

E[σ̂2
u] = σ2

u +
σ2
ν

I
(76)

E[σ̂2
θ ] = σ2

θ +
σ2
e

I
. (77)

Plugging these estimates into the VA reliability formula based on student average scores yields:

ρ̂mean =
σ̂2
u

σ̂2
u +

σ̂2
θ

J

(78)

=
σ2
u +

σ2
ν

I

σ2
u +

σ2
ν

I
+

σ2
θ

J
+ σ2

e

IJ

. (79)

Compared to Equation 17, we have increased the numerator by σ2
ν

I
, yielding the same upwardly

biased reliability observed in Appendix A for the analysis of the item-level data.

C Simulation Design and Results

Given the analytic derivation described in Appendix A, we examine model performance under more

realistic assumptions than those required for the derivation in our simulation. Our data-generating

model includes two additional parameters beyond Equation 11 to represent stratification common in

educational systems: (1) a cluster covariate that predicts differences in cluster VA and (2) nonrandom

sorting of students to clusters based on (here, perfectly reliable) pretest scores to match a common

empirical justification for the use of VAM.
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Table C.1: Fixed and Varying Simulation Design Factors

Simulation Factor Notation Values
Number of Subjects JK 1,000
Number of Clusters K 50
Number of Items I 5, 20, 50
Total VA Residual Variance σ2

u + σ2
ν 1

Prop. Total VA Variance Attributable to Items σ2
ν

σ2
u+σ2

ν
0 to 1 in increments of .05

Student Residual Variance σ2
θ 1

Pretest Coefficient β1 1
Cluster Covariate Coefficient γ1 .5
Intraclass Correlation on the Pretest ICCpre 0, .25, .5
Error Variance σ2

e 1
Item Variance σ2

b 1
Intercept β0 0

Notes: The pretest and cluster covariates are drawn from N ∼ (0, 1).

Table C.1 summarizes the simulation design. The focal simulation factor is the proportion

of item-level VA variance explained by cluster-by-item interactions, or σ2
ν

σ2
u+σ2

ν
. We fix the sum

σ2
u+σ2

ν = 1 so that the total residual variance in yijk remains constant across conditions to facilitate

comparability. When this proportion is 0, there are no cluster-by-item interactions, and the variance

of the cluster effects is 1. When this proportion is 1, there are no average cluster effects, and the

variance of the cluster-by-item interactions is 1. We vary this proportion from 0 to 1 in increments of

.05. The other varying simulation factors include the number of items and the intraclass correlation

(ICC) on the pretest variable. We vary the number of items at 5, 20, and 50 to represent short,

moderate, and long assessments, and we vary the pretest ICC at 0, .25, and .5 to represent no sorting,

moderate sorting, and high sorting of students within clusters (Hedges & Hedberg, 2007). We fix

the remaining values to those specified in Table C.1 and perform 60 replicates of each condition.

We generate the data and fit two models, one assuming constant VA effects across items, the

other allowing for cluster-by-item interactions. Our primary goal is to examine estimates of the

reliability of uk derived from each model and to determine how these estimates compare to the

analytic solution described earlier. We expect that the reliability results from the simulation will

match those of the derivation because, while the simulation design is more complex due to the

49



presence of covariates and non-random sorting of students into clusters, the variance components

of the model are nonetheless independent conditional on the included covariates. We conduct the

simulation and empirical analyses in R and use the lme4 package to estimate the models (Bates

et al., 2015).

Figure C.1 shows the simulation results. The x-axis shows the proportion of VA variance

attributable to cluster-by-item interactions ( σ2
ν

σ2
u+σ2

ν
) and the y-axis shows the estimated bias in VA

reliability (the misspecified model minus the correct model). The blue lines show LOESS curves

fit to the simulation results and the dashed black lines show the predicted bias derived from the

formula in Appendix A based on each data-generating process. We first see that the simulation

results are in near-perfect alignment with the analytic results that show that the estimated reliability

of a constant VA model will be inflated whenever σ2
ν > 0. Second, as expected, the bias is less

severe when the number of items is greater. Last, the ICC for the pretest scores does not affect the

results, suggesting that this pattern of results is robust to sorting among clusters fully captured by

the covariates.

We include additional simulation results in our supplement. In short, we find that estimated

standard errors for student and cluster covariates are unchanged, which is not surprising because

the total variance remains constant across conditions. We also find that the coefficients for the

student and cluster fixed effects are unbiased across all conditions. Thus, the implications of omitted

cluster-by-item interactions appear to only affect the reliability of VA estimates (by biasing the

random effect variances) while the fixed portions of the model are relatively unaffected. The VA

estimates themselves are perfectly correlated across the two models, though the lower reliability of

the interaction model yields greater shrinkage in the associated VA estimates. We also replicate our

results using dichotomous items and a pretest with varying degrees of measurement error and find

that the pattern of results is unchanged.

As an additional sensitivity check, we compare the item-level analyses to the more conventional

VAM approach in which student mean scores rather than item responses serve as the outcome

variable in the regression (Equation 1). We find identical results to those reported here. That is, as
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the proportion of VA variance due to cluster-by-item interactions increases, estimated reliability

becomes upwardly biased. Thus, inflated reliability is not an artifact of mean scores per se, but of

the omitted cluster-by-item interactions (see Appendix B). These interactions are masked in the

standard mean score model but are easily estimable when item-level data are available.

Figure C.1: VAMs Assuming Constant Effects Across Items Overestimate Reliability
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The y-axis shows the estimated bias in VA reliability (main effects model minus interaction model) and the x-axis
shows the proportion of item-level VA variance due to cluster-by-item interactions ( σ2

ν

σ2
u+σ2

ν
). The black dashed lines

represent the theoretical prediction of the reliability bias derived from the formula in Appendix A. The blue lines
represent LOESS curves fit to the simulation results. n i = number of items; icc pre = intraclass correlation on the
pretest variable.

D Equivalence of G-Theory and Correlation Estimates of Reliability in the

Tanzania Data

To further illustrate the interpretation and affordances of the item-level VAMs, we use the large

nature of the case study dataset to demonstrate the equivalence between the reliabilities derived

from the multilevel model with the corresponding correlations between replications. We approach

this demonstration in a bootstrap resampling framework using the following steps:
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1. Create a perfectly balanced subsample by limiting the data to exactly 50 randomly sampled

students per school (excluding schools with fewer than 50 students) and randomly sample

100 schools. Remove a single item so that we have an even number of items (8 items total),

allowing for an equal split between samples. (We remove Swahili because it has the lowest

item discrimination of the 9 items in the full sample.)

2. Split the data into a training set and two test sets with 25 students and 4 items each. The

training set and the test sets contain different samples of students. The first test set contains

the same 4 items as the training set and the second test set contains the other 4 items (the

initial 4 items of the training set are discarded).

3. Fit both Equations 20 and 21 to the training set, extract the VA estimates for each school, and

calculate the model-implied VA reliability.

4. Fit Equation 20 to both test sets and extract the VA estimates.

5. Correlate the VA estimates from the training set to those of the test sets.

6. Repeat steps 2-5 1,000 times and collect the results for analysis.

This bootstrap resampling procedure allows us to determine the extent to which the model-based

estimated reliabilities accurately match the implied correlations between replications when only

students vary or both students and items vary between replications. Theoretically, these two

estimators of reliability should coincide in expectation.

Figure D.1 shows our bootstrap resampling approach comparing the model-based reliabilities

to correlation-based reliabilities. In line with our derivations, the estimates from both methods

are similar. That is, when students differ but items are held constant, the reliability estimates

from Model 2 match the correlation between replications, on average. When both students and

items differ, the estimates of Model 3 match the correlation between replications, on average.

Furthermore, the reliability estimates from the Generalizability Theory formulas are more precisely

estimated (SDs ≈ .01) than those derived from direct correlations between replications (SDs ≈ .02),
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suggesting that the G-Theory estimator is more efficient, at least in these data. Thus, even if only

one time point is available, researchers can use our approach to precisely estimate the reliability of

a VA estimate had different items been administered, even when the number of items is small.

Figure D.1: Comparison of Reliability Estimators in Brandt (2023) Data
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The y-axis shows the estimated reliability of a school VA estimate and the x-axis shows the reliability estimator, either a
correlation between replications or the Generalizability Theory/multilevel model formula. The panels show whether the
same items or different items are selected. The analyses derive from a balanced subsample of the full data from Brandt
(2023). Each resampled dataset contains 100 schools, 25 students, and 4 items. The distributions show the results of
1,000 replications.
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